Spaces:
Runtime error
Runtime error
File size: 37,078 Bytes
0924f30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 |
# coding=utf-8
# Copyright 2021 The Deeplab2 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Implements Axial-ResNets proposed in Axial-DeepLab [1].
[1] Axial-Deeplab: Stand-Alone Axial-Attention for Panoptic Segmentation,
ECCV 2020 Spotlight.
Huiyu Wang, Yukun Zhu, Bradley Green, Hartwig Adam, Alan Yuille,
Liang-Chieh Chen.
"""
import tensorflow as tf
from deeplab2.model import utils
from deeplab2.model.layers import activations
from deeplab2.model.layers import axial_block_groups
from deeplab2.model.layers import convolutions
from deeplab2.model.layers import resized_fuse
from deeplab2.model.layers import stems
# Add a suffix in layer names that indicate if the current layer is a part of
# the backbone or an extra layer, i.e. if the current layer will be pretrained
# or not. This name will be used when we apply 10x larger learning rates for
# extra parameters that have not been pretrained, in panoptic segmentation.
# This keyword is reserved and should not be a part of the variable names in a
# classification pretrained backbone.
EXTRA = 'extra'
# Similarly, we will apply 10x larger learning rates on the memory feature.
# This global variable name will be accessed when we build the optimizers. This
# keyword is reserved and should not be a part of the variable names in a
# classification pretrained backbone.
MEMORY_FEATURE = 'memory_feature'
class AxialResNet(tf.keras.Model):
"""An Axial-ResNet model as proposed in Axial-DeepLab [1] and MaX-DeepLab [2].
An Axial-ResNet [1] replaces 3x3 convolutions in a Resnet by axial-attention
layers. A dual-path transformer [2] and a stacked decoder [2] can be used
optionally. In addition, this class supports scaling models with SWideRNet [3]
and augmenting convolutions with Switchable Atrous Convolution [4].
Reference:
[1] Axial-Deeplab: Stand-Alone Axial-Attention for Panoptic Segmentation,
ECCV 2020 Spotlight. https://arxiv.org/abs/2003.07853
Huiyu Wang, Yukun Zhu, Bradley Green, Hartwig Adam, Alan Yuille,
Liang-Chieh Chen.
[2] MaX-DeepLab: "End-to-End Panoptic Segmentation with Mask Transformers",
CVPR 2021. https://arxiv.org/abs/2012.00759
Huiyu Wang, Yukun Zhu, Hartwig Adam, Alan Yuille, Liang-Chieh Chen.
[3] Scaling Wide Residual Networks for Panoptic Segmentation,
https://arxiv.org/abs/2011.11675
Liang-Chieh Chen, Huiyu Wang, Siyuan Qiao.
[4] DetectoRS: Detecting Objects with Recursive Feature Pyramid and Switchable
Atrous Convolution, CVPR 2021. https://arxiv.org/abs/2006.02334
Siyuan Qiao, Liang-Chieh Chen, Alan Yuille.
"""
def __init__(self,
name,
num_blocks=(3, 4, 6, 3),
backbone_layer_multiplier=1.0,
width_multiplier=1.0,
stem_width_multiplier=1.0,
output_stride=16,
classification_mode=False,
backbone_type='resnet_beta',
use_axial_beyond_stride=16,
backbone_use_transformer_beyond_stride=32,
extra_decoder_use_transformer_beyond_stride=32,
backbone_decoder_num_stacks=0,
backbone_decoder_blocks_per_stage=1,
extra_decoder_num_stacks=0,
extra_decoder_blocks_per_stage=1,
max_num_mask_slots=128,
num_mask_slots=128,
memory_channels=256,
base_transformer_expansion=1.0,
global_feed_forward_network_channels=256,
high_resolution_output_stride=4,
activation='relu',
block_group_config=None,
bn_layer=tf.keras.layers.BatchNormalization,
conv_kernel_weight_decay=0.0):
"""Initializes an AxialResNet model.
Args:
name: A string, the name of the model.
num_blocks: A list of 4 integers. It denotes the number of blocks to
include in the last 4 stages or block groups. Each group consists of
blocks that output features of the same resolution. Defaults to (3, 4,
6, 3) as in MaX-DeepLab-S.
backbone_layer_multiplier: A float, layer_multiplier for the backbone,
excluding the STEM. This flag controls the number of layers. Defaults to
1.0 as in MaX-DeepLab-S.
width_multiplier: A float, the channel multiplier for the block groups.
Defaults to 1.0 as in MaX-DeepLab-S.
stem_width_multiplier: A float, the channel multiplier for stem
convolutions. Defaults to 1.0 as in MaX-DeepLab-S.
output_stride: An integer, the maximum ratio of input to output spatial
resolution. Defaults to 16 as in MaX-DeepLab-S.
classification_mode: A boolean, whether to perform in a classification
mode. If it is True, this function directly returns backbone feature
endpoints. Note that these feature endpoints can also be used directly
for Panoptic-DeepLab or Motion-DeepLab. If it is False, this function
builds MaX-DeepLab extra decoder layers and extra transformer layers.
Defaults to False as in MaX-DeepLab.
backbone_type: A string, the type of backbone. Supports 'resnet',
'resnet_beta', and 'wider_resnet'. It controls both the stem type and
the residual block type. Defaults to 'resnet_beta' as in MaX-DeepLab-S.
use_axial_beyond_stride: An integer, the stride beyond which we use axial
attention. Set to 0 if no axial attention is desired. Defaults to 16 as
in MaX-DeepLab.
backbone_use_transformer_beyond_stride: An integer, the stride beyond
which we use a memory path transformer block on top of a regular pixel
path block, in the backbone. Set to 0 if no transformer block is desired
in the backbone. Defaults to 32 as in MaX-DeepLab-S.
extra_decoder_use_transformer_beyond_stride: An integer, the stride beyond
which we use a memory path transformer block on top of a regular pixel
path block, in the extra decoder stages. Set to 0 if no transformer
block is desired in the extra decoder stages. Defaults to 32 as in
MaX-DeepLab-S.
backbone_decoder_num_stacks: An integer, the number of decoder stacks
(introduced in MaX-DeepLab) that we use in the backbone. The stacked
decoders are applied in a stacked hour-glass style. Defaults to 0 as in
MaX-DeepLab-S.
backbone_decoder_blocks_per_stage: An integer, the number of consecutive
residual blocks to apply for each decoder stage, in the backbone.
Defaults to 1 as in MaX-DeepLab-S.
extra_decoder_num_stacks: An integer, the number of decoder stacks
(introduced in MaX-DeepLab) that we use in the extra decoder layers. It
is different from backbone_decoder_blocks_per_stage in that the extra
decoder stacks will be trained from scratch on segmentation tasks,
instead of pretrained on ImageNet classification. Defaults to 0 as in
MaX-DeepLab-S.
extra_decoder_blocks_per_stage: An integer, the number of consecutive
residual blocks to apply for each decoder stage, in the extra decoder
stages. Defaults to 1 as in MaX-DeepLab-S.
max_num_mask_slots: An integer, the maximum possible number of mask slots
that will be used. This will be used in a pretraining-finetuning use
case with different num_mask_slots: We can set max_num_mask_slots to the
maximum possible num_mask_slots, and then the saved checkpoint can be
loaded for finetuning with a different num_mask_slots. Defaults to 128
as in MaX-DeepLab.
num_mask_slots: An integer, the number of mask slots that will be used.
Defaults to 128 as in MaX-DeepLab-S.
memory_channels: An integer, the number of channels for the whole memory
path. Defaults to 256 as in MaX-DeepLab-S.
base_transformer_expansion: A float, the base width expansion rate for
transformer layers. Defaults to 1.0 as in MaX-DeepLab-S.
global_feed_forward_network_channels: An integer, the number of channels
in the final global feed forward network, i.e. the mask feature head and
the mask class head. Defaults to 256 as in MaX-DeepLab-S.
high_resolution_output_stride: An integer, the final decoding output
stride. Defaults to 4 as in MaX-DeepLab-S.
activation: A string, type of activation function to apply. Support
'relu', 'swish' (or 'silu'), 'gelu', 'approximated_gelu', and 'elu'.
block_group_config: An argument dictionary that will be passed to
block_group.
bn_layer: An optional tf.keras.layers.Layer that computes the
normalization (default: tf.keras.layers.BatchNormalization).
conv_kernel_weight_decay: A float, the weight decay for convolution
kernels.
Raises:
ValueError: If backbone_type is not one of 'resnet', 'resnet_beta', or
'wider_resnet'.
ValueError: If extra_decoder_blocks_per_stage is not greater than zero.
"""
super(AxialResNet, self).__init__(name=name)
if extra_decoder_blocks_per_stage <= 0:
raise ValueError(
'Extra_decoder_blocks_per_stage should be great than zero.')
if block_group_config is None:
block_group_config = {}
# Compute parameter lists for block_groups. We consider five stages so that
# it is general enough to cover fully axial resnets and wider resnets.
total_strides_list = [1, 2, 4, 8, 16]
# Append 3 blocks for the first stage of fully axial resnets and wider
# resnets.
num_blocks_list = [3] + utils.scale_int_list(list(num_blocks),
backbone_layer_multiplier)
strides_list = [2] * 5
# Expand the transformer and the block filters with the stride.
transformer_expansions_list = []
filters_list = []
for index, stride in enumerate(total_strides_list):
# Reduce the number of channels when we apply transformer to low level
# features (stride = 2, 4, or 8). The base_transformer_expansion is used
# for stride = 16, i.e. the standard output_stride for MaX-DeepLab-S.
transformer_expansions_list.append(base_transformer_expansion * stride /
16.0)
# Compute the base number of filters in each stage. For example, the last
# stage of ResNet50 has an input stride of 16, then we compute the base
# number of filters for a bottleneck block as 16 * 32 = 512, which is the
# number of filters for the 3x3 convolution in those blocks.
if backbone_type == 'wider_resnet' and index == 0:
# SWideRNet variants use stem_width_multiplier for the first block.
filters_list.append(int(round(stride * 32 * stem_width_multiplier)))
else:
filters_list.append(int(round(stride * 32 * width_multiplier)))
self._num_mask_slots = None
# Initialize memory_feature only when a transformer block is used.
self._use_memory_feature = (backbone_use_transformer_beyond_stride or
(extra_decoder_use_transformer_beyond_stride and
(not classification_mode)))
if self._use_memory_feature:
self._memory_feature_shape = (1, max_num_mask_slots, memory_channels)
self._memory_feature_initializer = (
tf.keras.initializers.TruncatedNormal(stddev=1.0))
self._memory_feature_regularizer = tf.keras.regularizers.l2(
conv_kernel_weight_decay)
if num_mask_slots:
self._num_mask_slots = num_mask_slots
# Use a convolutional stem except fully axial cases.
stem_channels = int(round(64 * stem_width_multiplier))
self._activation_fn = activations.get_activation(activation)
if use_axial_beyond_stride == 1:
self._stem = tf.identity
first_block_index = 0
elif backbone_type.lower() == 'wider_resnet':
self._stem = convolutions.Conv2DSame(
output_channels=stem_channels,
kernel_size=3,
name='stem',
strides=2,
use_bias=False,
use_bn=True,
bn_layer=bn_layer,
activation='none',
conv_kernel_weight_decay=conv_kernel_weight_decay)
# Wider ResNet has five residual block stages, so we start from index 0.
first_block_index = 0
# Since we have applied the first strided convolution here, we do not use
# a stride for the first stage (which will operate on stride 2).
strides_list[0] = 1
total_strides_list[0] = 2
elif backbone_type.lower() == 'resnet_beta':
self._stem = stems.InceptionSTEM(
bn_layer=bn_layer,
width_multiplier=stem_width_multiplier,
conv_kernel_weight_decay=conv_kernel_weight_decay,
activation=activation)
first_block_index = 1
elif backbone_type.lower() == 'resnet':
self._stem = convolutions.Conv2DSame(
output_channels=stem_channels,
kernel_size=7,
name='stem',
strides=2,
use_bias=False,
use_bn=True,
bn_layer=bn_layer,
activation='none',
conv_kernel_weight_decay=conv_kernel_weight_decay)
first_block_index = 1
else:
raise ValueError(backbone_type + ' is not supported.')
self._first_block_index = first_block_index
# Apply standard ResNet block groups. We use first_block_index to
# distinguish models with 4 stages and those with 5 stages.
for index in range(first_block_index, 5):
current_name = '_stage{}'.format(index + 1)
utils.safe_setattr(self, current_name, axial_block_groups.BlockGroup(
filters=filters_list[index],
num_blocks=num_blocks_list[index],
name=utils.get_layer_name(current_name),
original_resnet_stride=strides_list[index],
original_resnet_input_stride=total_strides_list[index],
output_stride=output_stride,
backbone_type=backbone_type,
use_axial_beyond_stride=use_axial_beyond_stride,
use_transformer_beyond_stride=(
backbone_use_transformer_beyond_stride),
transformer_expansion=transformer_expansions_list[index],
activation=activation,
bn_layer=bn_layer,
conv_kernel_weight_decay=conv_kernel_weight_decay,
**block_group_config))
self._backbone_decoder_num_stacks = backbone_decoder_num_stacks
self._classification_mode = classification_mode
self._extra_decoder_num_stacks = extra_decoder_num_stacks
self._output_stride = output_stride
self._high_resolution_output_stride = high_resolution_output_stride
self._width_multiplier = width_multiplier
self._activation = activation
self._bn_layer = bn_layer
self._conv_kernel_weight_decay = conv_kernel_weight_decay
self._backbone_use_transformer_beyond_stride = (
backbone_use_transformer_beyond_stride)
self._extra_decoder_use_transformer_beyond_stride = (
extra_decoder_use_transformer_beyond_stride)
# Keep track of the current stack so that we know when to stop.
current_stack = 0
# Track whether we are building the backbone. This will affect the backbone
# related arguments, local learning rate, and so on.
current_is_backbone = True
if backbone_decoder_num_stacks == 0:
# No stacked decoder is used in the backbone, so we have finished building
# the backbone. We either return the classification endpoints, or continue
# building a non-backbone decoder for panoptic segmentation.
if self._classification_mode:
return
else:
current_is_backbone = False
if not current_is_backbone:
# Now that we have finished building the backbone and no stacked decoder
# is used in the backbone, so we start to build extra (i.e., non-backbone)
# layers for panoptic segmentation.
current_name = '_stage5_' + EXTRA
utils.safe_setattr(
self, current_name, axial_block_groups.BlockGroup(
filters=filters_list[-1],
num_blocks=extra_decoder_blocks_per_stage,
name=utils.get_layer_name(current_name),
original_resnet_stride=1,
original_resnet_input_stride=32,
output_stride=output_stride,
backbone_type=backbone_type,
use_axial_beyond_stride=use_axial_beyond_stride,
use_transformer_beyond_stride=(
extra_decoder_use_transformer_beyond_stride),
transformer_expansion=base_transformer_expansion,
activation=activation,
bn_layer=bn_layer,
conv_kernel_weight_decay=conv_kernel_weight_decay,
**block_group_config))
# Compute parameter lists for stacked decoder.
total_decoder_num_stacks = (
backbone_decoder_num_stacks + extra_decoder_num_stacks)
# Use a function to compute the next stride.
next_stride_fn = lambda x: x // 2
current_decoder_stride = output_stride
decoder_stage = 0
# Exit if we have enough stacks and reach the decoding output stride.
while (current_stack < total_decoder_num_stacks or
current_decoder_stride > high_resolution_output_stride):
decoder_stage += 1
current_decoder_stride = next_stride_fn(current_decoder_stride)
if current_decoder_stride == output_stride:
current_stack += 1
# Always use blocks from the last resnet stage if the current stride is
# output stride (the largest stride).
original_resnet_input_stride = 32
# Switch the decoder direction if we reach the largest stride.
next_stride_fn = lambda x: x // 2
else:
original_resnet_input_stride = current_decoder_stride
# Scale channels according to the strides.
decoder_channels = original_resnet_input_stride * 64 * width_multiplier
current_transformer_expansion = (
base_transformer_expansion * current_decoder_stride / 16.0)
# Apply a decoder block group for building the backbone.
if current_is_backbone:
current_name = '_decoder_stage{}'.format(decoder_stage)
utils.safe_setattr(
self, current_name, axial_block_groups.BlockGroup(
filters=decoder_channels // 4,
num_blocks=backbone_decoder_blocks_per_stage,
name=utils.get_layer_name(current_name),
original_resnet_stride=1,
original_resnet_input_stride=original_resnet_input_stride,
output_stride=output_stride,
backbone_type=backbone_type,
use_axial_beyond_stride=use_axial_beyond_stride,
use_transformer_beyond_stride=(
backbone_use_transformer_beyond_stride),
transformer_expansion=current_transformer_expansion,
activation=activation,
bn_layer=bn_layer,
conv_kernel_weight_decay=conv_kernel_weight_decay,
**block_group_config))
if (current_decoder_stride == output_stride and
current_stack == backbone_decoder_num_stacks):
# Now that we have finished building the backbone, we either return the
# classification endpoints, or continue building a non-backbone decoder
# for panoptic segmentation.
if classification_mode:
return
else:
current_is_backbone = False
# Apply a decoder block group for building the extra layers.
if not current_is_backbone:
# Continue building an extra (i.e., non-backbone) decoder for panoptic
# segmentation.
current_name = '_decoder_stage{}_{}'.format(decoder_stage, EXTRA)
utils.safe_setattr(
self, current_name, axial_block_groups.BlockGroup(
filters=decoder_channels // 4,
num_blocks=extra_decoder_blocks_per_stage,
name=utils.get_layer_name(current_name),
original_resnet_stride=1,
original_resnet_input_stride=original_resnet_input_stride,
output_stride=output_stride,
backbone_type=backbone_type,
use_axial_beyond_stride=use_axial_beyond_stride,
use_transformer_beyond_stride=(
extra_decoder_use_transformer_beyond_stride),
transformer_expansion=current_transformer_expansion,
activation=activation,
bn_layer=bn_layer,
conv_kernel_weight_decay=conv_kernel_weight_decay,
**block_group_config))
if current_decoder_stride == high_resolution_output_stride:
next_stride_fn = lambda x: x * 2
# Assert that we have already returned if we are building a classifier.
assert not classification_mode
if (backbone_use_transformer_beyond_stride or
extra_decoder_use_transformer_beyond_stride):
# Build extra memory path feed forward networks for the class feature and
# the mask feature.
current_name = '_class_feature_' + EXTRA
utils.safe_setattr(
self, current_name, convolutions.Conv1D(
global_feed_forward_network_channels,
utils.get_layer_name(current_name),
use_bias=False,
use_bn=True,
bn_layer=bn_layer,
activation=activation,
conv_kernel_weight_decay=conv_kernel_weight_decay))
current_name = '_mask_feature_' + EXTRA
utils.safe_setattr(
self, current_name, convolutions.Conv1D(
global_feed_forward_network_channels,
utils.get_layer_name(current_name),
use_bias=False,
use_bn=True,
bn_layer=bn_layer,
activation=activation,
conv_kernel_weight_decay=conv_kernel_weight_decay))
def build(self, input_shape):
"""Builds model weights and input shape dependent sub-layers."""
if self._use_memory_feature:
self._memory_feature = self.add_weight(
name=MEMORY_FEATURE,
shape=self._memory_feature_shape,
initializer=self._memory_feature_initializer,
regularizer=self._memory_feature_regularizer)
else:
self._memory_feature = None
# Go through the loop to build the ResizedFuse layers.
current_stack = 0
# Track whether we are building the backbone. This will affect the backbone
# related arguments, local learning rate, and so on.
current_is_backbone = self._backbone_decoder_num_stacks != 0
total_decoder_num_stacks = (
self._backbone_decoder_num_stacks + self._extra_decoder_num_stacks)
next_stride_fn = lambda x: x // 2
current_decoder_stride = self._output_stride
decoder_stage = 0
while (current_stack < total_decoder_num_stacks or
current_decoder_stride > self._high_resolution_output_stride):
decoder_stage += 1
current_decoder_stride = next_stride_fn(current_decoder_stride)
if current_decoder_stride == self._output_stride:
current_stack += 1
original_resnet_input_stride = 32
next_stride_fn = lambda x: x // 2
else:
original_resnet_input_stride = current_decoder_stride
# Compute the decoder_channels according to original_resnet_input_stride.
# For example, at stride 4 with width multiplier = 1, we use 4 * 64 = 256
# channels, which is the same as a standard ResNet.
decoder_channels = int(round(
original_resnet_input_stride * 64 * self._width_multiplier))
decoder_height, decoder_width = utils.scale_mutable_sequence(
input_shape[1:3], 1.0 / current_decoder_stride)
if current_is_backbone:
current_name = '_decoder_stage{}_resized_fuse'.format(decoder_stage)
else:
current_name = '_decoder_stage{}_{}_resized_fuse'.format(
decoder_stage, EXTRA)
utils.safe_setattr(
self, current_name, resized_fuse.ResizedFuse(
name=utils.get_layer_name(current_name),
height=decoder_height,
width=decoder_width,
num_channels=decoder_channels,
activation=self._activation,
bn_layer=self._bn_layer,
conv_kernel_weight_decay=self._conv_kernel_weight_decay))
if (current_decoder_stride == self._output_stride and
current_stack == self._backbone_decoder_num_stacks):
# Now that we have finished building the backbone, we either return the
# classification endpoints, or continue building a non-backbone decoder
# for panoptic segmentation.
if self._classification_mode:
return
current_is_backbone = False
if current_decoder_stride == self._high_resolution_output_stride:
next_stride_fn = lambda x: x * 2
def call_encoder_before_stacked_decoder(self, inputs, training=False):
"""Performs a forward pass of the encoder before stacking decoders.
Args:
inputs: An input [batch, height, width, channel] tensor.
training: A boolean, whether the model is in training mode.
Returns:
current_output: An output tensor with shape [batch, new_height, new_width,
new_channel].
activated_output: An activated output tensor with shape [batch,
new_height, new_width, new_channel].
memory_feature: None if no transformer is used. A [batch, num_memory,
memory_channel] tensor if transformer is used.
endpoints: A dict, the network endpoints that might be used by DeepLab.
"""
memory_feature = self._memory_feature
if self._use_memory_feature:
if self._num_mask_slots:
memory_feature = self._memory_feature[:, :self._num_mask_slots, :]
memory_feature = tf.tile(memory_feature,
[tf.shape(inputs)[0], 1, 1])
endpoints = {}
output = self._stem(inputs)
activated_output = self._activation_fn(output)
endpoints['stage1'] = output
endpoints['res1'] = activated_output
# Apply standard ResNet block groups. We use first_block_index to
# distinguish models with 4 stages and those with 5 stages.
for index in range(self._first_block_index, 5):
current_name = '_stage{}'.format(index + 1)
current_output, activated_output, memory_feature = (
getattr(self, current_name)(
(activated_output, memory_feature), training=training))
endpoints[utils.get_layer_name(current_name)] = current_output
activated_output_name = 'res{}'.format(index + 1)
endpoints[activated_output_name] = activated_output
return current_output, activated_output, memory_feature, endpoints
def call_stacked_decoder(self,
current_output,
activated_output,
memory_feature,
endpoints,
training=False):
"""Performs a forward pass of the stacked decoders.
Args:
current_output: An output tensor with shape [batch, new_height, new_width,
new_channel].
activated_output: An activated output tensor with shape [batch,
new_height, new_width, new_channel].
memory_feature: None if no transformer is used. A [batch, num_memory,
memory_channel] tensor if transformer is used.
endpoints: A dict, the network endpoints that might be used by DeepLab.
training: A boolean, whether the model is in training mode.
Returns:
memory_feature: None if no transformer is used. A [batch, num_memory,
memory_channel] tensor if transformer is used.
high_resolution_outputs: A list of decoded tensors with
high_resolution_output_stride.
backbone_output: An output tensor of the backbone, with output_stride.
endpoints: A dict, the network endpoints that might be used by DeepLab.
"""
# Keep track of the current stack so that we know when to stop.
current_stack = 0
# Track whether we are building the backbone. This will affect the backbone
# related arguments, local learning rate, and so on.
current_is_backbone = True
high_resolution_outputs = []
if self._backbone_decoder_num_stacks == 0:
# Keep track of the backbone output, since it might be used as the
# semantic feature output.
backbone_output = activated_output
# Now that we have finished building the backbone, we either return the
# classification logits, or continue building a non-backbone decoder for
# panoptic segmentation.
if self._classification_mode:
endpoints['backbone_output'] = backbone_output
return None, None, None, endpoints
else:
current_is_backbone = False
if not current_is_backbone:
# Build extra layers if we have finished building the backbone.
current_name = '_stage5_' + EXTRA
current_output, activated_output, memory_feature = (
getattr(self, current_name)(
(activated_output, memory_feature), training=training))
# Compute parameter lists for stacked decoder.
total_decoder_num_stacks = (
self._backbone_decoder_num_stacks + self._extra_decoder_num_stacks)
# Keep track of all endpoints that will be used in the stacked decoder.
stride_to_features = {}
stride_to_features[min(2, self._output_stride)] = [endpoints['stage1']]
stride_to_features[min(4, self._output_stride)] = [endpoints['stage2']]
stride_to_features[min(8, self._output_stride)] = [endpoints['stage3']]
stride_to_features[min(16, self._output_stride)] = [endpoints['stage4']]
# Only keep the last endpoint from the backbone with the same resolution,
# i.e., if the output stride is 16, the current output will override
# the stride 16 endpoint, endpoints['res4'].
stride_to_features[min(32, self._output_stride)] = [current_output]
# Use a function to compute the next stride.
next_stride_fn = lambda x: x // 2
current_decoder_stride = self._output_stride
decoder_stage = 0
# Exit if we have enough stacks and reach the decoding output stride.
while (current_stack < total_decoder_num_stacks or
current_decoder_stride > self._high_resolution_output_stride):
decoder_stage += 1
current_decoder_stride = next_stride_fn(current_decoder_stride)
if current_decoder_stride == self._output_stride:
current_stack += 1
# Switch the decoder direction if we reach the largest stride.
next_stride_fn = lambda x: x // 2
# Include the current feature and two previous features from the target
# resolution in the decoder. We select two because it contains one upward
# feature and one downward feature, but better choices are possible.
decoder_features_list = (
[current_output] +
stride_to_features[current_decoder_stride][-2:])
# Fuse and resize features with striding, resizing and 1x1 convolutions.
if current_is_backbone:
current_name = '_decoder_stage{}_resized_fuse'.format(decoder_stage)
else:
current_name = '_decoder_stage{}_{}_resized_fuse'.format(
decoder_stage, EXTRA)
activated_output = getattr(self, current_name)(
decoder_features_list, training=training)
# Apply a decoder block group for building the backbone.
if current_is_backbone:
current_name = '_decoder_stage{}'.format(decoder_stage)
current_output, activated_output, memory_feature = (
getattr(self, current_name)(
(activated_output, memory_feature), training=training))
if (current_decoder_stride == self._output_stride and
current_stack == self._backbone_decoder_num_stacks):
# Keep track of the backbone output, since it might be used as the
# semantic feature output.
backbone_output = activated_output
# Now that we have finished building the backbone, we either return the
# classification logits, or continue building a non-backbone decoder for
# panoptic segmentation.
if self._classification_mode:
endpoints['backbone_output'] = backbone_output
return None, None, None, endpoints
else:
current_is_backbone = False
# Apply a decoder block group for building the extra layers.
if not current_is_backbone:
current_name = '_decoder_stage{}_{}'.format(decoder_stage, EXTRA)
current_output, activated_output, memory_feature = (
getattr(self, current_name)(
(activated_output, memory_feature), training=training))
# Append the current feature into the feature dict for possible later
# usage.
stride_to_features[current_decoder_stride].append(current_output)
if current_decoder_stride == self._high_resolution_output_stride:
high_resolution_outputs.append(activated_output)
next_stride_fn = lambda x: x * 2
return memory_feature, high_resolution_outputs, backbone_output, endpoints
def call_extra_endpoints(self,
memory_feature,
high_resolution_outputs,
backbone_output,
endpoints,
training=False):
"""Performs a forward pass to generate extra endpoints.
Args:
memory_feature: None if no transformer is used. A [batch, num_memory,
memory_channel] tensor if transformer is used.
high_resolution_outputs: A list of decoded tensors with
high_resolution_output_stride.
backbone_output: An output tensor of the backbone, with output_stride.
endpoints: A dict, the network endpoints that might be used by DeepLab.
training: A boolean, whether the model is in training mode.
Returns:
endpoints: A dict, the network endpoints that might be used by DeepLab.
"""
# Assert that we have already returned if we are building a classifier.
assert not self._classification_mode
if (self._backbone_use_transformer_beyond_stride or
self._extra_decoder_use_transformer_beyond_stride):
# Build extra memory path feed forward networks for the class feature and
# the mask feature.
class_feature = getattr(self, '_class_feature_' + EXTRA)(
memory_feature, training=training)
mask_feature = getattr(self, '_mask_feature_' + EXTRA)(
memory_feature, training=training)
endpoints['transformer_class_feature'] = class_feature
endpoints['transformer_mask_feature'] = mask_feature
# Output the last high resolution feature as panoptic feature.
endpoints['feature_panoptic'] = high_resolution_outputs[-1]
# Avoid sharing our panoptic feature with the semantic auxiliary loss. So we
# use the backbone feature or the decoded backbone feature for the semantic
# segmentation head (i.e. the auxiliary loss).
if self._extra_decoder_num_stacks:
endpoints['feature_semantic'] = (
high_resolution_outputs[self._backbone_decoder_num_stacks])
else:
endpoints['feature_semantic'] = backbone_output
endpoints['backbone_output'] = backbone_output
return endpoints
def call(self, inputs, training=False):
"""Performs a forward pass.
Args:
inputs: An input [batch, height, width, channel] tensor.
training: A boolean, whether the model is in training mode.
Returns:
endpoints: A dict, the network endpoints that might be used by DeepLab.
"""
current_output, activated_output, memory_feature, endpoints = (
self.call_encoder_before_stacked_decoder(inputs, training=training))
memory_feature, high_resolution_outputs, backbone_output, endpoints = (
self.call_stacked_decoder(current_output,
activated_output,
memory_feature,
endpoints,
training=training))
if self._classification_mode:
return endpoints
endpoints = self.call_extra_endpoints(memory_feature,
high_resolution_outputs,
backbone_output,
endpoints,
training=training)
return endpoints
|