Spaces:
Runtime error
Runtime error
File size: 6,575 Bytes
0924f30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
# coding=utf-8
# Copyright 2021 The Deeplab2 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for deeplabv3plus."""
import numpy as np
import tensorflow as tf
from deeplab2 import common
from deeplab2 import config_pb2
from deeplab2.model.decoder import deeplabv3plus
from deeplab2.utils import test_utils
def _create_deeplabv3plus_model(high_level_feature_name, low_level_feature_name,
low_level_channels_project,
aspp_output_channels, decoder_output_channels,
atrous_rates, num_classes, **kwargs):
decoder_options = config_pb2.DecoderOptions(
feature_key=high_level_feature_name,
decoder_channels=decoder_output_channels,
aspp_channels=aspp_output_channels,
atrous_rates=atrous_rates)
deeplabv3plus_options = config_pb2.ModelOptions.DeeplabV3PlusOptions(
low_level=config_pb2.LowLevelOptions(
feature_key=low_level_feature_name,
channels_project=low_level_channels_project),
num_classes=num_classes)
return deeplabv3plus.DeepLabV3Plus(decoder_options, deeplabv3plus_options,
**kwargs)
class Deeplabv3PlusTest(tf.test.TestCase):
def test_deeplabv3plus_feature_key_not_present(self):
deeplabv3plus_decoder = _create_deeplabv3plus_model(
high_level_feature_name='not_in_features_dict',
low_level_feature_name='in_feature_dict',
low_level_channels_project=128,
aspp_output_channels=64,
decoder_output_channels=64,
atrous_rates=[6, 12, 18],
num_classes=80)
input_dict = dict()
input_dict['in_feature_dict'] = tf.random.uniform(shape=(2, 65, 65, 32))
with self.assertRaises(KeyError):
_ = deeplabv3plus_decoder(input_dict)
def test_deeplabv3plus_output_shape(self):
list_of_num_classes = [2, 19, 133]
for num_classes in list_of_num_classes:
deeplabv3plus_decoder = _create_deeplabv3plus_model(
high_level_feature_name='high',
low_level_feature_name='low',
low_level_channels_project=128,
aspp_output_channels=64,
decoder_output_channels=128,
atrous_rates=[6, 12, 18],
num_classes=num_classes)
input_dict = dict()
input_dict['high'] = tf.random.uniform(shape=(2, 65, 65, 32))
input_dict['low'] = tf.random.uniform(shape=(2, 129, 129, 16))
expected_shape = [2, 129, 129, num_classes]
logit_tensor = deeplabv3plus_decoder(input_dict)
self.assertListEqual(
logit_tensor[common.PRED_SEMANTIC_LOGITS_KEY].shape.as_list(),
expected_shape)
def test_deeplabv3plus_feature_extraction_consistency(self):
deeplabv3plus_decoder = _create_deeplabv3plus_model(
high_level_feature_name='high',
low_level_feature_name='low',
low_level_channels_project=128,
aspp_output_channels=96,
decoder_output_channels=64,
atrous_rates=[6, 12, 18],
num_classes=80)
input_dict = dict()
input_dict['high'] = tf.random.uniform(shape=(2, 65, 65, 32))
input_dict['low'] = tf.random.uniform(shape=(2, 129, 129, 16))
reference_logits_tensor = deeplabv3plus_decoder(
input_dict, training=False)
logits_tensor_to_compare = deeplabv3plus_decoder(input_dict, training=False)
np.testing.assert_equal(
reference_logits_tensor[common.PRED_SEMANTIC_LOGITS_KEY].numpy(),
logits_tensor_to_compare[common.PRED_SEMANTIC_LOGITS_KEY].numpy())
def test_deeplabv3plus_pool_size_setter(self):
deeplabv3plus_decoder = _create_deeplabv3plus_model(
high_level_feature_name='high',
low_level_feature_name='low',
low_level_channels_project=128,
aspp_output_channels=96,
decoder_output_channels=64,
atrous_rates=[6, 12, 18],
num_classes=80)
pool_size = (10, 10)
deeplabv3plus_decoder.set_pool_size(pool_size)
self.assertTupleEqual(deeplabv3plus_decoder._aspp._aspp_pool._pool_size,
pool_size)
@test_utils.test_all_strategies
def test_deeplabv3plus_sync_bn(self, strategy):
input_dict = dict()
input_dict['high'] = tf.random.uniform(shape=(2, 65, 65, 32))
input_dict['low'] = tf.random.uniform(shape=(2, 129, 129, 16))
with strategy.scope():
for bn_layer in test_utils.NORMALIZATION_LAYERS:
deeplabv3plus_decoder = _create_deeplabv3plus_model(
high_level_feature_name='high',
low_level_feature_name='low',
low_level_channels_project=128,
aspp_output_channels=96,
decoder_output_channels=64,
atrous_rates=[6, 12, 18],
num_classes=80,
bn_layer=bn_layer)
_ = deeplabv3plus_decoder(input_dict)
def test_deeplabv3plus_pool_size_resetter(self):
deeplabv3plus_decoder = _create_deeplabv3plus_model(
high_level_feature_name='high',
low_level_feature_name='low',
low_level_channels_project=128,
aspp_output_channels=96,
decoder_output_channels=64,
atrous_rates=[6, 12, 18],
num_classes=80)
pool_size = (None, None)
deeplabv3plus_decoder.reset_pooling_layer()
self.assertTupleEqual(deeplabv3plus_decoder._aspp._aspp_pool._pool_size,
pool_size)
def test_deeplabv3plus_ckpt_items(self):
deeplabv3plus_decoder = _create_deeplabv3plus_model(
high_level_feature_name='high',
low_level_feature_name='low',
low_level_channels_project=128,
aspp_output_channels=96,
decoder_output_channels=64,
atrous_rates=[6, 12, 18],
num_classes=80)
ckpt_dict = deeplabv3plus_decoder.checkpoint_items
self.assertIn(common.CKPT_DEEPLABV3PLUS_ASPP, ckpt_dict)
self.assertIn(common.CKPT_DEEPLABV3PLUS_PROJECT_CONV_BN_ACT, ckpt_dict)
self.assertIn(common.CKPT_DEEPLABV3PLUS_FUSE, ckpt_dict)
self.assertIn(common.CKPT_SEMANTIC_LAST_LAYER, ckpt_dict)
if __name__ == '__main__':
tf.test.main()
|