Spaces:
Runtime error
Runtime error
File size: 10,154 Bytes
0924f30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
# coding=utf-8
# Copyright 2021 The Deeplab2 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This file contains code to build an ASPP layer.
Reference:
- [Rethinking Atrous Convolution for Semantic Image Segmentation](
https://arxiv.org/pdf/1706.05587.pdf)
- [ParseNet: Looking Wider to See Better](
https://arxiv.org/pdf/1506.04579.pdf).
"""
from absl import logging
import tensorflow as tf
from deeplab2.model import utils
from deeplab2.model.layers import convolutions
layers = tf.keras.layers
backend = tf.keras.backend
class ASPPConv(tf.keras.layers.Layer):
"""An atrous convolution for ASPP."""
def __init__(self,
output_channels,
atrous_rate,
name,
bn_layer=tf.keras.layers.BatchNormalization):
"""Creates a atrous convolution layer for the ASPP.
This layer consists of an atrous convolution followed by a BatchNorm layer
and a ReLU activation.
Args:
output_channels: An integer specifying the number of output channels of
the convolution.
atrous_rate: An integer specifying the atrous/dilation rate of the
convolution.
name: A string specifying the name of this layer.
bn_layer: An optional tf.keras.layers.Layer that computes the
normalization (default: tf.keras.layers.BatchNormalization).
"""
super(ASPPConv, self).__init__(name=name)
self._conv_bn_act = convolutions.Conv2DSame(
output_channels,
kernel_size=3,
name='conv_bn_act',
atrous_rate=atrous_rate,
use_bias=False,
use_bn=True,
bn_layer=bn_layer,
activation='relu')
def call(self, input_tensor, training=False):
"""Performs a forward pass.
Args:
input_tensor: An input tensor of type tf.Tensor with shape [batch, height,
width, channels].
training: A boolean flag indicating whether training behavior should be
used (default: False).
Returns:
The output tensor.
"""
return self._conv_bn_act(input_tensor, training=training)
class ASPPPool(tf.keras.layers.Layer):
"""A pooling layer for ASPP."""
def __init__(self,
output_channels,
name,
bn_layer=tf.keras.layers.BatchNormalization):
"""Creates a pooling layer for the ASPP.
This layer consists of a global average pooling, followed by a convolution,
and by a BatchNorm layer and a ReLU activation.
Args:
output_channels: An integer specifying the number of output channels of
the convolution.
name: A string specifying the name of this layer.
bn_layer: An optional tf.keras.layers.Layer that computes the
normalization (default: tf.keras.layers.BatchNormalization).
"""
super(ASPPPool, self).__init__(name=name)
self._pool_size = (None, None)
self._conv_bn_act = convolutions.Conv2DSame(
output_channels,
kernel_size=1,
name='conv_bn_act',
use_bias=False,
use_bn=True,
bn_layer=bn_layer,
activation='relu')
def set_pool_size(self, pool_size):
"""Sets the pooling size of the pooling layer.
The default behavior of the pooling layer is global average pooling. A
custom pooling size can be set here.
Args:
pool_size: A tuple specifying the pooling size of the pooling layer.
Raises:
An error occurs if exactly one pooling dimension is set to 'None'.
"""
# If exactly one pooling dimension is 'None' raise an error.
if None in pool_size and pool_size != (None, None):
raise ValueError('The ASPP pooling layer requires that the pooling size '
'is set explicitly for both dimensions. In case, global '
'average pooling should be used, call '
'reset_pooling_layer() or set both to None.')
self._pool_size = pool_size
logging.info('Global average pooling in the ASPP pooling layer was replaced'
' with tiled average pooling using the provided pool_size. '
'Please make sure this behavior is intended.')
def get_pool_size(self):
return self._pool_size
def reset_pooling_layer(self):
"""Resets the pooling layer to global average pooling."""
self._pool_size = (None, None)
def call(self, input_tensor, training=False):
"""Performs a forward pass.
Args:
input_tensor: An input tensor of type tf.Tensor with shape [batch, height,
width, channels].
training: A boolean flag indicating whether training behavior should be
used (default: False).
Returns:
The output tensor.
"""
if tuple(self._pool_size) == (None, None):
# Global image pooling
pool_size = input_tensor.shape[1:3]
else:
# Tiled image pooling
pool_size = self._pool_size
x = backend.pool2d(input_tensor, pool_size, padding='valid',
pool_mode='avg')
x = self._conv_bn_act(x, training=training)
target_h = tf.shape(input_tensor)[1]
target_w = tf.shape(input_tensor)[2]
x = utils.resize_align_corners(x, [target_h, target_w])
return x
class ASPP(tf.keras.layers.Layer):
"""An atrous spatial pyramid pooling layer."""
def __init__(self,
output_channels,
atrous_rates,
aspp_use_only_1x1_proj_conv=False,
name='ASPP',
bn_layer=tf.keras.layers.BatchNormalization):
"""Creates an ASPP layer.
Args:
output_channels: An integer specifying the number of output channels of
each ASPP convolution layer.
atrous_rates: A list of three integers specifying the atrous/dilation rate
of each ASPP convolution layer.
aspp_use_only_1x1_proj_conv: Boolean, specifying if the ASPP five branches
are turned off or not. If True, the ASPP module is degenerated to one
1x1 convolution, projecting the input channels to `output_channels`.
name: A string specifying the name of this layer (default: 'ASPP').
bn_layer: An optional tf.keras.layers.Layer that computes the
normalization (default: tf.keras.layers.BatchNormalization).
Raises:
ValueError: An error occurs when both atrous_rates does not contain 3
elements and `aspp_use_only_1x1_proj_conv` is False.
"""
super(ASPP, self).__init__(name=name)
if not aspp_use_only_1x1_proj_conv and len(atrous_rates) != 3:
raise ValueError(
'The ASPP layers need exactly 3 atrous rates, but %d were given' %
len(atrous_rates))
self._aspp_use_only_1x1_proj_conv = aspp_use_only_1x1_proj_conv
# Projection convolution is always used.
self._proj_conv_bn_act = convolutions.Conv2DSame(
output_channels,
kernel_size=1,
name='proj_conv_bn_act',
use_bias=False,
use_bn=True,
bn_layer=bn_layer,
activation='relu')
if not aspp_use_only_1x1_proj_conv:
self._conv_bn_act = convolutions.Conv2DSame(
output_channels,
kernel_size=1,
name='conv_bn_act',
use_bias=False,
use_bn=True,
bn_layer=bn_layer,
activation='relu')
rate1, rate2, rate3 = atrous_rates
self._aspp_conv1 = ASPPConv(output_channels, rate1, name='aspp_conv1',
bn_layer=bn_layer)
self._aspp_conv2 = ASPPConv(output_channels, rate2, name='aspp_conv2',
bn_layer=bn_layer)
self._aspp_conv3 = ASPPConv(output_channels, rate3, name='aspp_conv3',
bn_layer=bn_layer)
self._aspp_pool = ASPPPool(output_channels, name='aspp_pool',
bn_layer=bn_layer)
# Dropout is needed only when ASPP five branches are used.
self._proj_drop = layers.Dropout(rate=0.1)
def set_pool_size(self, pool_size):
"""Sets the pooling size of the ASPP pooling layer.
The default behavior of the pooling layer is global average pooling. A
custom pooling size can be set here.
Args:
pool_size: A tuple specifying the pooling size of the ASPP pooling layer.
"""
if not self._aspp_use_only_1x1_proj_conv:
self._aspp_pool.set_pool_size(pool_size)
def get_pool_size(self):
if not self._aspp_use_only_1x1_proj_conv:
return self._aspp_pool.get_pool_size()
else:
return (None, None)
def reset_pooling_layer(self):
"""Resets the pooling layer to global average pooling."""
self._aspp_pool.reset_pooling_layer()
def call(self, input_tensor, training=False):
"""Performs a forward pass.
Args:
input_tensor: An input tensor of type tf.Tensor with shape [batch, height,
width, channels].
training: A boolean flag indicating whether training behavior should be
used (default: False).
Returns:
The output tensor.
"""
if self._aspp_use_only_1x1_proj_conv:
x = self._proj_conv_bn_act(input_tensor, training=training)
else:
# Apply the ASPP module.
results = []
results.append(self._conv_bn_act(input_tensor, training=training))
results.append(self._aspp_conv1(input_tensor, training=training))
results.append(self._aspp_conv2(input_tensor, training=training))
results.append(self._aspp_conv3(input_tensor, training=training))
results.append(self._aspp_pool(input_tensor, training=training))
x = tf.concat(results, 3)
x = self._proj_conv_bn_act(x, training=training)
x = self._proj_drop(x, training=training)
return x
|