File size: 11,908 Bytes
0924f30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
# coding=utf-8
# Copyright 2021 The Deeplab2 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Implementation of the Segmentation and Tracking Quality (STQ) metric."""

import collections
from typing import MutableMapping, Sequence, Dict, Text, Any
import numpy as np
import tensorflow as tf


def _update_dict_stats(stat_dict: MutableMapping[int, tf.Tensor],
                       id_array: tf.Tensor):
  """Updates a given dict with corresponding counts."""
  ids, _, counts = tf.unique_with_counts(id_array)
  for idx, count in zip(ids.numpy(), counts):
    if idx in stat_dict:
      stat_dict[idx] += count
    else:
      stat_dict[idx] = count


class STQuality(object):
  """Metric class for the Segmentation and Tracking Quality (STQ).

  The metric computes the geometric mean of two terms.
  - Association Quality: This term measures the quality of the track ID
      assignment for `thing` classes. It is formulated as a weighted IoU
      measure.
  - Segmentation Quality: This term measures the semantic segmentation quality.
      The standard class IoU measure is used for this.

  Example usage:

  stq_obj = segmentation_tracking_quality.STQuality(num_classes, things_list,
    ignore_label, max_instances_per_category, offset)
  stq_obj.update_state(y_true_1, y_pred_1)
  stq_obj.update_state(y_true_2, y_pred_2)
  ...
  result = stq_obj.result().numpy()
  """

  def __init__(self,
               num_classes: int,
               things_list: Sequence[int],
               ignore_label: int,
               max_instances_per_category: int,
               offset: int,
               name='stq'
               ):
    """Initialization of the STQ metric.

    Args:
      num_classes: Number of classes in the dataset as an integer.
      things_list: A sequence of class ids that belong to `things`.
      ignore_label: The class id to be ignored in evaluation as an integer or
        integer tensor.
      max_instances_per_category: The maximum number of instances for each class
        as an integer or integer tensor.
      offset: The maximum number of unique labels as an integer or integer
        tensor.
      name: An optional name. (default: 'st_quality')
    """
    self._name = name
    self._num_classes = num_classes
    self._ignore_label = ignore_label
    self._things_list = things_list
    self._max_instances_per_category = max_instances_per_category

    if ignore_label >= num_classes:
      self._confusion_matrix_size = num_classes + 1
      self._include_indices = np.arange(self._num_classes)
    else:
      self._confusion_matrix_size = num_classes
      self._include_indices = np.array(
          [i for i in range(num_classes) if i != self._ignore_label])

    self._iou_confusion_matrix_per_sequence = collections.OrderedDict()
    self._predictions = collections.OrderedDict()
    self._ground_truth = collections.OrderedDict()
    self._intersections = collections.OrderedDict()
    self._sequence_length = collections.OrderedDict()
    self._offset = offset
    lower_bound = num_classes * max_instances_per_category
    if offset < lower_bound:
      raise ValueError('The provided offset %d is too small. No guarantess '
                       'about the correctness of the results can be made. '
                       'Please choose an offset that is higher than num_classes'
                       ' * max_instances_per_category = %d' % lower_bound)

  def update_state(self, y_true: tf.Tensor, y_pred: tf.Tensor,
                   sequence_id=0):
    """Accumulates the segmentation and tracking quality statistics.

    Args:
      y_true: The ground-truth panoptic label map for a particular video frame
        (defined as semantic_map * max_instances_per_category + instance_map).
      y_pred: The predicted panoptic label map for a particular video frame
        (defined as semantic_map * max_instances_per_category + instance_map).
      sequence_id: The optional ID of the sequence the frames belong to. When no
        sequence is given, all frames are considered to belong to the same
        sequence (default: 0).
    """
    y_true = tf.cast(y_true, dtype=tf.int64)
    y_pred = tf.cast(y_pred, dtype=tf.int64)
    semantic_label = y_true // self._max_instances_per_category
    semantic_prediction = y_pred // self._max_instances_per_category
    # Check if the ignore value is outside the range [0, num_classes]. If yes,
    # map `_ignore_label` to `_num_classes`, so it can be used to create the
    # confusion matrix.
    if self._ignore_label > self._num_classes:
      semantic_label = tf.where(
          tf.not_equal(semantic_label, self._ignore_label), semantic_label,
          self._num_classes)
      semantic_prediction = tf.where(
          tf.not_equal(semantic_prediction, self._ignore_label),
          semantic_prediction, self._num_classes)
    if sequence_id in self._iou_confusion_matrix_per_sequence:
      self._iou_confusion_matrix_per_sequence[sequence_id] += (
          tf.math.confusion_matrix(
              tf.reshape(semantic_label, [-1]),
              tf.reshape(semantic_prediction, [-1]),
              self._confusion_matrix_size,
              dtype=tf.int64))
      self._sequence_length[sequence_id] += 1
    else:
      self._iou_confusion_matrix_per_sequence[sequence_id] = (
          tf.math.confusion_matrix(
              tf.reshape(semantic_label, [-1]),
              tf.reshape(semantic_prediction, [-1]),
              self._confusion_matrix_size,
              dtype=tf.int64))
      self._predictions[sequence_id] = {}
      self._ground_truth[sequence_id] = {}
      self._intersections[sequence_id] = {}
      self._sequence_length[sequence_id] = 1

    instance_label = y_true % self._max_instances_per_category

    label_mask = tf.zeros_like(semantic_label, dtype=tf.bool)
    prediction_mask = tf.zeros_like(semantic_prediction, dtype=tf.bool)
    for things_class_id in self._things_list:
      label_mask = tf.logical_or(label_mask,
                                 tf.equal(semantic_label, things_class_id))
      prediction_mask = tf.logical_or(
          prediction_mask, tf.equal(semantic_prediction, things_class_id))

    # Select the `crowd` region of the current class. This region is encoded
    # instance id `0`.
    is_crowd = tf.logical_and(tf.equal(instance_label, 0), label_mask)
    # Select the non-crowd region of the corresponding class as the `crowd`
    # region is ignored for the tracking term.
    label_mask = tf.logical_and(label_mask, tf.logical_not(is_crowd))
    # Do not punish id assignment for regions that are annotated as `crowd` in
    # the ground-truth.
    prediction_mask = tf.logical_and(prediction_mask, tf.logical_not(is_crowd))

    seq_preds = self._predictions[sequence_id]
    seq_gts = self._ground_truth[sequence_id]
    seq_intersects = self._intersections[sequence_id]

    # Compute and update areas of ground-truth, predictions and intersections.
    _update_dict_stats(seq_preds, y_pred[prediction_mask])
    _update_dict_stats(seq_gts, y_true[label_mask])

    non_crowd_intersection = tf.logical_and(label_mask, prediction_mask)
    intersection_ids = (
        y_true[non_crowd_intersection] * self._offset +
        y_pred[non_crowd_intersection])
    _update_dict_stats(seq_intersects, intersection_ids)

  def result(self) -> Dict[Text, Any]:
    """Computes the segmentation and tracking quality.

    Returns:
      A dictionary containing:
        - 'STQ': The total STQ score.
        - 'AQ': The total association quality (AQ) score.
        - 'IoU': The total mean IoU.
        - 'STQ_per_seq': A list of the STQ score per sequence.
        - 'AQ_per_seq': A list of the AQ score per sequence.
        - 'IoU_per_seq': A list of mean IoU per sequence.
        - 'Id_per_seq': A list of sequence Ids to map list index to sequence.
        - 'Length_per_seq': A list of the length of each sequence.
    """
    # Compute association quality (AQ)
    num_tubes_per_seq = [0] * len(self._ground_truth)
    aq_per_seq = [0] * len(self._ground_truth)
    iou_per_seq = [0] * len(self._ground_truth)
    id_per_seq = [''] * len(self._ground_truth)

    for index, sequence_id in enumerate(self._ground_truth):
      outer_sum = 0.0
      predictions = self._predictions[sequence_id]
      ground_truth = self._ground_truth[sequence_id]
      intersections = self._intersections[sequence_id]
      num_tubes_per_seq[index] = len(ground_truth)
      id_per_seq[index] = sequence_id

      for gt_id, gt_size in ground_truth.items():
        inner_sum = 0.0
        for pr_id, pr_size in predictions.items():
          tpa_key = self._offset * gt_id + pr_id
          if tpa_key in intersections:
            tpa = intersections[tpa_key].numpy()
            fpa = pr_size.numpy() - tpa
            fna = gt_size.numpy() - tpa
            inner_sum += tpa * (tpa / (tpa + fpa + fna))

        outer_sum += 1.0 / gt_size.numpy() * inner_sum
      aq_per_seq[index] = outer_sum

    aq_mean = np.sum(aq_per_seq) / np.maximum(np.sum(num_tubes_per_seq), 1e-15)
    aq_per_seq = aq_per_seq / np.maximum(num_tubes_per_seq, 1e-15)

    # Compute IoU scores.
    # The rows correspond to ground-truth and the columns to predictions.
    # Remove fp from confusion matrix for the void/ignore class.
    total_confusion = np.zeros(
        (self._confusion_matrix_size, self._confusion_matrix_size),
        dtype=np.int64)
    for index, confusion in enumerate(
        self._iou_confusion_matrix_per_sequence.values()):
      confusion = confusion.numpy()
      removal_matrix = np.zeros_like(confusion)
      removal_matrix[self._include_indices, :] = 1.0
      confusion *= removal_matrix
      total_confusion += confusion

      # `intersections` corresponds to true positives.
      intersections = confusion.diagonal()
      fps = confusion.sum(axis=0) - intersections
      fns = confusion.sum(axis=1) - intersections
      unions = intersections + fps + fns

      num_classes = np.count_nonzero(unions)
      ious = (intersections.astype(np.double) /
              np.maximum(unions, 1e-15).astype(np.double))
      iou_per_seq[index] = np.sum(ious) / num_classes

    # `intersections` corresponds to true positives.
    intersections = total_confusion.diagonal()
    fps = total_confusion.sum(axis=0) - intersections
    fns = total_confusion.sum(axis=1) - intersections
    unions = intersections + fps + fns

    num_classes = np.count_nonzero(unions)
    ious = (intersections.astype(np.double) /
            np.maximum(unions, 1e-15).astype(np.double))
    iou_mean = np.sum(ious) / num_classes

    st_quality = np.sqrt(aq_mean * iou_mean)
    st_quality_per_seq = np.sqrt(aq_per_seq * iou_per_seq)
    return {'STQ': st_quality,
            'AQ': aq_mean,
            'IoU': float(iou_mean),
            'STQ_per_seq': st_quality_per_seq,
            'AQ_per_seq': aq_per_seq,
            'IoU_per_seq': iou_per_seq,
            'ID_per_seq': id_per_seq,
            'Length_per_seq': list(self._sequence_length.values()),
            }

  def reset_states(self):
    """Resets all states that accumulated data."""
    self._iou_confusion_matrix_per_sequence = collections.OrderedDict()
    self._predictions = collections.OrderedDict()
    self._ground_truth = collections.OrderedDict()
    self._intersections = collections.OrderedDict()
    self._sequence_length = collections.OrderedDict()