Spaces:
Runtime error
Runtime error
File size: 29,833 Bytes
0924f30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 |
# coding=utf-8
# Copyright 2021 The Deeplab2 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This file contains code to get a sample from a dataset."""
import functools
import numpy as np
import tensorflow as tf
from deeplab2 import common
from deeplab2.data import dataset_utils
from deeplab2.data.preprocessing import input_preprocessing as preprocessing
def _compute_gaussian_from_std(sigma):
"""Computes the Gaussian and its size from a given standard deviation."""
size = int(6 * sigma + 3)
x = np.arange(size, dtype=np.float)
y = x[:, np.newaxis]
x0, y0 = 3 * sigma + 1, 3 * sigma + 1
return np.exp(-((x - x0)**2 + (y - y0)**2) / (2 * sigma**2)), size
class PanopticSampleGenerator:
"""This class generates samples from images and labels."""
def __init__(self,
dataset_info,
is_training,
crop_size,
min_resize_value=None,
max_resize_value=None,
resize_factor=None,
min_scale_factor=1.,
max_scale_factor=1.,
scale_factor_step_size=0,
autoaugment_policy_name=None,
only_semantic_annotations=False,
thing_id_mask_annotations=False,
max_thing_id=128,
sigma=8,
focus_small_instances=None):
"""Initializes the panoptic segmentation generator.
Args:
dataset_info: A dictionary with the following keys.
- `name`: String, dataset name.
- `ignore_label`: Integer, ignore label.
- `class_has_instances_list`: A list of integers indicating which
class has instance annotations.
- `panoptic_label_divisor`: Integer, panoptic label divisor.
- `num_classes`: Integer, number of classes.
- `is_video_dataset`: Boolean, is video dataset or not.
is_training: Boolean, is training mode or not.
crop_size: Image crop size [height, width].
min_resize_value: A 2-tuple of (height, width), desired minimum value
after resize. If a single element is given, then height and width share
the same value. None, empty or having 0 indicates no minimum value will
be used.
max_resize_value: A 2-tuple of (height, width), maximum allowed value
after resize. If a single element is given, then height and width
share the same value. None, empty or having 0 indicates no maximum
value will be used.
resize_factor: Resized dimensions are multiple of factor plus one.
min_scale_factor: Minimum scale factor for random scale augmentation.
max_scale_factor: Maximum scale factor for random scale augmentation.
scale_factor_step_size: The step size from min scale factor to max scale
factor. The input is randomly scaled based on the value of
(min_scale_factor, max_scale_factor, scale_factor_step_size).
autoaugment_policy_name: String, autoaugment policy name. See
autoaugment_policy.py for available policies.
only_semantic_annotations: An optional flag indicating whether the model
needs only semantic annotations (default: False).
thing_id_mask_annotations: An optional flag indicating whether the model
needs thing_id_mask annotations. When `thing_id_mask_annotations` is
True, we will additionally return mask annotation for each `thing`
instance, encoded with a unique thing_id. This ground-truth annotation
could be used to learn a better segmentation mask for each instance.
`thing_id` indicates the number of unique thing-ID to each instance in
an image, starting the counting from 0 (default: False).
max_thing_id: The maximum number of possible thing instances per image. It
is used together when thing_id_mask_annotations = True, representing the
maximum thing ID encoded in the thing_id_mask. (default: 128).
sigma: The standard deviation of the Gaussian used to encode the center
keypoint (default: 8).
focus_small_instances: An optional dict that defines how to deal with
small instances (default: None):
-`threshold`: An integer defining the threshold pixel number for an
instance to be considered small.
-`weight`: A number that defines the loss weight for small instances.
"""
self._dataset_info = dataset_info
self._ignore_label = self._dataset_info['ignore_label']
self._only_semantic_annotations = only_semantic_annotations
self._sigma = sigma
self._instance_area_threshold = 0
self._small_instance_weight = 1.0
self._thing_id_mask_annotations = thing_id_mask_annotations
self._max_thing_id = max_thing_id
self._is_training = is_training
self._preprocessing_fn = functools.partial(
preprocessing.preprocess_image_and_label,
crop_height=crop_size[0],
crop_width=crop_size[1],
min_resize_value=min_resize_value,
max_resize_value=max_resize_value,
resize_factor=resize_factor,
min_scale_factor=min_scale_factor,
max_scale_factor=max_scale_factor,
scale_factor_step_size=scale_factor_step_size,
autoaugment_policy_name=autoaugment_policy_name,
ignore_label=self._ignore_label *
self._dataset_info['panoptic_label_divisor'],
is_training=self._is_training)
if focus_small_instances is not None:
self._instance_area_threshold = focus_small_instances['threshold']
self._small_instance_weight = focus_small_instances['weight']
self._gaussian, self._gaussian_size = _compute_gaussian_from_std(
self._sigma)
self._gaussian = tf.cast(tf.reshape(self._gaussian, [-1]), tf.float32)
def __call__(self, sample_dict):
"""Gets a sample.
Args:
sample_dict: A dictionary with the following keys and values:
- `image`: A tensor of shape [image_height, image_width, 3].
- `image_name`: String, image name.
- `label`: A tensor of shape [label_height, label_width, 1] or None.
- `height`: An integer specifying the height of the image.
- `width`: An integer specifying the width of the image.
- `sequence`: An optional string specifying the sequence name.
- `prev_image`: An optional tensor of the same shape as `image`.
- `prev_label`: An optional tensor of the same shape as `label`.
- `next_image`: An optional next-frame tensor of the shape of `image`.
- `next_label`: An optional next-frame tensor of the shape of `label`.
Returns:
sample: A dictionary storing required data for panoptic segmentation.
"""
return self.call(**sample_dict)
def call(self,
image,
image_name,
label,
height,
width,
sequence='',
prev_image=None,
prev_label=None,
next_image=None,
next_label=None):
"""Gets a sample.
Args:
image: A tensor of shape [image_height, image_width, 3].
image_name: String, image name.
label: A tensor of shape [label_height, label_width, 1] or None.
height: An integer specifying the height of the image.
width: An integer specifying the width of the image.
sequence: An optional string specifying the sequence name.
prev_image: An optional tensor of shape [image_height, image_width, 3].
prev_label: An optional tensor of shape [label_height, label_width, 1].
next_image: An optional tensor of shape [image_height, image_width, 3].
next_label: An optional tensor of shape [label_height, label_width, 1].
Returns:
sample: A dictionary storing required data for panoptic segmentation.
Raises:
ValueError: An error occurs when the label shape is invalid.
NotImplementedError: An error occurs when thing_id_mask_annotations comes
together with prev_image or prev_label, not currently implemented.
"""
if label is not None:
label.get_shape().assert_is_compatible_with(
tf.TensorShape([None, None, 1]))
original_label = tf.cast(label, dtype=tf.int32, name='original_label')
if next_label is not None:
original_next_label = tf.cast(
next_label, dtype=tf.int32, name='original_next_label')
# Reusing the preprocessing function for both next and prev samples.
if next_image is not None:
resized_image, image, label, next_image, next_label = (
self._preprocessing_fn(
image, label, prev_image=next_image, prev_label=next_label))
else:
resized_image, image, label, prev_image, prev_label = (
self._preprocessing_fn(
image, label, prev_image=prev_image, prev_label=prev_label))
sample = {
common.IMAGE: image
}
if prev_image is not None:
sample[common.IMAGE] = tf.concat([image, prev_image], axis=2)
if next_image is not None:
sample[common.NEXT_IMAGE] = next_image
sample[common.IMAGE] = tf.concat([image, next_image], axis=2)
if label is not None:
# Panoptic label for crowd regions will be ignore_label.
semantic_label, panoptic_label, thing_mask, crowd_region = (
dataset_utils.get_semantic_and_panoptic_label(
self._dataset_info, label, self._ignore_label))
sample[common.GT_SEMANTIC_KEY] = tf.squeeze(semantic_label, axis=2)
semantic_weights = tf.ones_like(semantic_label, dtype=tf.float32)
sample[common.SEMANTIC_LOSS_WEIGHT_KEY] = tf.squeeze(
semantic_weights, axis=2)
sample[common.GT_IS_CROWD] = tf.squeeze(crowd_region, axis=2)
if not self._only_semantic_annotations:
# The sample will have the original label including crowd regions.
sample[common.GT_PANOPTIC_KEY] = tf.squeeze(label, axis=2)
# Compute center loss for all non-crowd and non-ignore pixels.
non_crowd_and_non_ignore_regions = tf.logical_and(
tf.logical_not(crowd_region),
tf.not_equal(semantic_label, self._ignore_label))
sample[common.CENTER_LOSS_WEIGHT_KEY] = tf.squeeze(tf.cast(
non_crowd_and_non_ignore_regions, tf.float32), axis=2)
# Compute regression loss only for thing pixels that are not crowd.
non_crowd_things = tf.logical_and(
tf.logical_not(crowd_region), thing_mask)
sample[common.REGRESSION_LOSS_WEIGHT_KEY] = tf.squeeze(tf.cast(
non_crowd_things, tf.float32), axis=2)
prev_panoptic_label = None
next_panoptic_label = None
if prev_label is not None:
_, prev_panoptic_label, _, _ = (
dataset_utils.get_semantic_and_panoptic_label(
self._dataset_info, prev_label, self._ignore_label))
if next_label is not None:
_, next_panoptic_label, _, _ = (
dataset_utils.get_semantic_and_panoptic_label(
self._dataset_info, next_label, self._ignore_label))
(sample[common.GT_INSTANCE_CENTER_KEY],
sample[common.GT_INSTANCE_REGRESSION_KEY],
sample[common.SEMANTIC_LOSS_WEIGHT_KEY],
prev_center_map,
frame_center_offsets,
next_offset) = self._generate_gt_center_and_offset(
panoptic_label, semantic_weights, prev_panoptic_label,
next_panoptic_label)
sample[common.GT_INSTANCE_REGRESSION_KEY] = tf.cast(
sample[common.GT_INSTANCE_REGRESSION_KEY], tf.float32)
if next_label is not None:
sample[common.GT_NEXT_INSTANCE_REGRESSION_KEY] = tf.cast(
next_offset, tf.float32)
sample[common.NEXT_REGRESSION_LOSS_WEIGHT_KEY] = tf.cast(
tf.greater(tf.reduce_sum(tf.abs(next_offset), axis=2), 0),
tf.float32)
# Only squeeze center map and semantic loss weights, as regression map
# has two channels (x and y offsets).
sample[common.GT_INSTANCE_CENTER_KEY] = tf.squeeze(
sample[common.GT_INSTANCE_CENTER_KEY], axis=2)
sample[common.SEMANTIC_LOSS_WEIGHT_KEY] = tf.squeeze(
sample[common.SEMANTIC_LOSS_WEIGHT_KEY], axis=2)
if prev_label is not None:
sample[common.GT_FRAME_OFFSET_KEY] = frame_center_offsets
sample[common.GT_FRAME_OFFSET_KEY] = tf.cast(
sample[common.GT_FRAME_OFFSET_KEY], tf.float32)
frame_offsets_present = tf.logical_or(
tf.not_equal(frame_center_offsets[..., 0], 0),
tf.not_equal(frame_center_offsets[..., 1], 0))
sample[common.FRAME_REGRESSION_LOSS_WEIGHT_KEY] = tf.cast(
frame_offsets_present, tf.float32)
if self._is_training:
sample[common.IMAGE] = tf.concat(
[sample[common.IMAGE], prev_center_map], axis=2)
if self._thing_id_mask_annotations:
if any([prev_image is not None,
prev_label is not None,
next_image is not None,
next_label is not None]):
raise NotImplementedError(
'Current implementation of Max-DeepLab does not support '
+ 'prev_image, prev_label, next_image, or next_label.')
thing_id_mask, thing_id_class = (
self._generate_thing_id_mask_and_class(
panoptic_label, non_crowd_things))
sample[common.GT_THING_ID_MASK_KEY] = tf.squeeze(
thing_id_mask, axis=2)
sample[common.GT_THING_ID_CLASS_KEY] = thing_id_class
if not self._is_training:
# Resized image is only used during visualization.
sample[common.RESIZED_IMAGE] = resized_image
sample[common.IMAGE_NAME] = image_name
sample[common.GT_SIZE_RAW] = tf.stack([height, width], axis=0)
if self._dataset_info['is_video_dataset']:
sample[common.SEQUENCE_ID] = sequence
# Keep original labels for evaluation.
if label is not None:
orig_semantic_label, _, _, orig_crowd_region = (
dataset_utils.get_semantic_and_panoptic_label(
self._dataset_info, original_label, self._ignore_label))
sample[common.GT_SEMANTIC_RAW] = tf.squeeze(orig_semantic_label, axis=2)
if not self._only_semantic_annotations:
sample[common.GT_PANOPTIC_RAW] = tf.squeeze(original_label, axis=2)
sample[common.GT_IS_CROWD_RAW] = tf.squeeze(orig_crowd_region)
if next_label is not None:
sample[common.GT_NEXT_PANOPTIC_RAW] = tf.squeeze(
original_next_label, axis=2)
return sample
def _generate_thing_id_mask_and_class(self,
panoptic_label,
non_crowd_things):
"""Generates the ground-truth thing-ID masks and their class labels.
It computes thing-ID mask and class with unique ID for each thing instance.
`thing_id` indicates the number of unique thing-ID to each instance in an
image, starting the counting from 0. Each pixel in thing_id_mask is labeled
with the corresponding thing-ID.
Args:
panoptic_label: A tf.Tensor of shape [height, width, 1].
non_crowd_things: A tf.Tensor of shape [height, width, 1], indicating
non-crowd and thing-class regions.
Returns:
thing_id_mask: A tf.Tensor of shape [height, width, 1]. It assigns each
non-crowd thing instance a unique mask-ID label, starting from 0.
Unassigned pixels are set to -1.
thing_id_class: A tf.Tensor of shape [max_thing_id]. It contains semantic
ID of each instance assigned to thing_id_mask. The remaining
(max_thing_id - num_things) elements are set to -1.
Raises:
ValueError: An error occurs when the thing-ID mask contains stuff or crowd
region.
ValueError: An error occurs when thing_count is greater or equal to
self._max_thing_id.
"""
unique_ids, _ = tf.unique(tf.reshape(panoptic_label, [-1]))
thing_id_mask = -tf.ones_like(panoptic_label)
thing_id_class = -tf.ones(self._max_thing_id)
thing_count = 0
for panoptic_id in unique_ids:
semantic_id = panoptic_id // self._dataset_info['panoptic_label_divisor']
# Filter out IDs that are not thing instances (i.e., IDs for ignore_label,
# stuff classes or crowd). Stuff classes and crowd regions both have IDs
# of the form panoptic_id = semantic_id * label_divisor (i.e., instance id
# = 0)
if (semantic_id == self._dataset_info['ignore_label'] or
panoptic_id % self._dataset_info['panoptic_label_divisor'] == 0):
continue
assert_stuff_crowd = tf.debugging.Assert(
tf.reduce_all(non_crowd_things[panoptic_label == panoptic_id]),
['thing-ID mask here must not contain stuff or crowd region.'])
with tf.control_dependencies([assert_stuff_crowd]):
panoptic_id = tf.identity(panoptic_id)
thing_id_mask = tf.where(panoptic_label == panoptic_id,
thing_count, thing_id_mask)
assert_thing_count = tf.debugging.Assert(
thing_count < self._max_thing_id,
['thing_count must be smaller than self._max_thing_id.'])
with tf.control_dependencies([assert_thing_count]):
thing_count = tf.identity(thing_count)
thing_id_class = tf.tensor_scatter_nd_update(
thing_id_class, [[thing_count]], [semantic_id])
thing_count += 1
return thing_id_mask, thing_id_class
def _generate_prev_centers_with_noise(self,
panoptic_label,
offset_noise_factor=0.05,
false_positive_rate=0.2,
false_positive_noise_factor=0.05):
"""Generates noisy center predictions for the previous frame.
Args:
panoptic_label: A tf.Tensor of shape [height, width, 1].
offset_noise_factor: An optional float defining the maximum fraction of
the object size that is used to displace the previous center.
false_positive_rate: An optional float indicating at which probability
false positives should be added.
false_positive_noise_factor: An optional float defining the maximum
fraction of the object size that is used to displace the false positive
center.
Returns:
A tuple of (center, ids_to_center) with both being tf.Tensor of shape
[height, width, 1] and shape [N, 2] where N is the number of unique IDs.
"""
height = tf.shape(panoptic_label)[0]
width = tf.shape(panoptic_label)[1]
# Pad center to make boundary handling easier.
center_pad_begin = int(round(3 * self._sigma + 1))
center_pad_end = int(round(3 * self._sigma + 2))
center_pad = center_pad_begin + center_pad_end
center = tf.zeros((height + center_pad, width + center_pad))
unique_ids, _ = tf.unique(tf.reshape(panoptic_label, [-1]))
ids_to_center_x = tf.zeros_like(unique_ids, dtype=tf.int32)
ids_to_center_y = tf.zeros_like(unique_ids, dtype=tf.int32)
for panoptic_id in unique_ids:
semantic_id = panoptic_id // self._dataset_info['panoptic_label_divisor']
# Filter out IDs that should be ignored, are stuff classes or crowd.
# Stuff classes and crowd regions both have IDs of the form panoptic_id =
# semantic_id * label_divisor
if (semantic_id == self._dataset_info['ignore_label'] or
panoptic_id % self._dataset_info['panoptic_label_divisor'] == 0):
continue
# Convert [[y0, x0, 0], ...] to [[y0, ...], [x0, ...], [0, ...]].
mask_index = tf.cast(
tf.transpose(tf.where(panoptic_label == panoptic_id)), tf.float32)
centers = tf.reduce_mean(mask_index, axis=1)
bbox_size = (
tf.reduce_max(mask_index, axis=1) - tf.reduce_min(mask_index, axis=1))
# Add noise.
center_y = (
centers[0] + tf.random.normal([], dtype=tf.float32) *
offset_noise_factor * bbox_size[0])
center_x = (
centers[1] + tf.random.normal([], dtype=tf.float32) *
offset_noise_factor * bbox_size[1])
center_x = tf.minimum(
tf.maximum(tf.cast(tf.round(center_x), tf.int32), 0), width - 1)
center_y = tf.minimum(
tf.maximum(tf.cast(tf.round(center_y), tf.int32), 0), height - 1)
id_index = tf.where(tf.equal(panoptic_id, unique_ids))
ids_to_center_x = tf.tensor_scatter_nd_update(
ids_to_center_x, id_index, tf.expand_dims(center_x, axis=0))
ids_to_center_y = tf.tensor_scatter_nd_update(
ids_to_center_y, id_index, tf.expand_dims(center_y, axis=0))
def add_center_gaussian(center_x_coord, center_y_coord, center):
# Due to the padding with center_pad_begin in center, the computed
# center becomes the upper left corner in the center tensor.
upper_left = center_x_coord, center_y_coord
bottom_right = (upper_left[0] + self._gaussian_size,
upper_left[1] + self._gaussian_size)
indices_x, indices_y = tf.meshgrid(
tf.range(upper_left[0], bottom_right[0]),
tf.range(upper_left[1], bottom_right[1]))
indices = tf.transpose(
tf.stack([tf.reshape(indices_y, [-1]),
tf.reshape(indices_x, [-1])]))
return tf.tensor_scatter_nd_max(
center, indices, self._gaussian, name='center_scatter')
center = add_center_gaussian(center_x, center_y, center)
# Generate false positives.
center_y = (
tf.cast(center_y, dtype=tf.float32) +
tf.random.normal([], dtype=tf.float32) * false_positive_noise_factor *
bbox_size[0])
center_x = (
tf.cast(center_x, dtype=tf.float32) +
tf.random.normal([], dtype=tf.float32) * false_positive_noise_factor *
bbox_size[1])
center_x = tf.minimum(
tf.maximum(tf.cast(tf.round(center_x), tf.int32), 0), width - 1)
center_y = tf.minimum(
tf.maximum(tf.cast(tf.round(center_y), tf.int32), 0), height - 1)
# Draw a sample to decide whether to add a false positive or not.
center = center + tf.cast(
tf.random.uniform([], dtype=tf.float32) < false_positive_rate,
tf.float32) * (
add_center_gaussian(center_x, center_y, center) - center)
center = center[center_pad_begin:(center_pad_begin + height),
center_pad_begin:(center_pad_begin + width)]
center = tf.expand_dims(center, -1)
return center, unique_ids, ids_to_center_x, ids_to_center_y
def _generate_gt_center_and_offset(self,
panoptic_label,
semantic_weights,
prev_panoptic_label=None,
next_panoptic_label=None):
"""Generates the ground-truth center and offset from the panoptic labels.
Additionally, the per-pixel weights for the semantic branch are increased
for small instances. In case, prev_panoptic_label is passed, it also
computes the previous center heatmap with random noise and the offsets
between center maps.
Args:
panoptic_label: A tf.Tensor of shape [height, width, 1].
semantic_weights: A tf.Tensor of shape [height, width, 1].
prev_panoptic_label: An optional tf.Tensor of shape [height, width, 1].
next_panoptic_label: An optional tf.Tensor of shape [height, width, 1].
Returns:
A tuple (center, offsets, weights, prev_center, frame_offset*,
next_offset) with each being a tf.Tensor of shape [height, width, 1 (2*)].
If prev_panoptic_label is None, prev_center and frame_offset are None.
If next_panoptic_label is None, next_offset is None.
"""
height = tf.shape(panoptic_label)[0]
width = tf.shape(panoptic_label)[1]
# Pad center to make boundary handling easier.
center_pad_begin = int(round(3 * self._sigma + 1))
center_pad_end = int(round(3 * self._sigma + 2))
center_pad = center_pad_begin + center_pad_end
center = tf.zeros((height + center_pad, width + center_pad))
offset_x = tf.zeros((height, width, 1), dtype=tf.int32)
offset_y = tf.zeros((height, width, 1), dtype=tf.int32)
unique_ids, _ = tf.unique(tf.reshape(panoptic_label, [-1]))
prev_center = None
frame_offsets = None
# Due to loop handling in tensorflow, these variables had to be defined for
# all cases.
frame_offset_x = tf.zeros((height, width, 1), dtype=tf.int32)
frame_offset_y = tf.zeros((height, width, 1), dtype=tf.int32)
# Next-frame instance offsets.
next_offset = None
next_offset_y = tf.zeros((height, width, 1), dtype=tf.int32)
next_offset_x = tf.zeros((height, width, 1), dtype=tf.int32)
if prev_panoptic_label is not None:
(prev_center, prev_unique_ids, prev_centers_x, prev_centers_y
) = self._generate_prev_centers_with_noise(prev_panoptic_label)
for panoptic_id in unique_ids:
semantic_id = panoptic_id // self._dataset_info['panoptic_label_divisor']
# Filter out IDs that should be ignored, are stuff classes or crowd.
# Stuff classes and crowd regions both have IDs of the form panopti_id =
# semantic_id * label_divisor
if (semantic_id == self._dataset_info['ignore_label'] or
panoptic_id % self._dataset_info['panoptic_label_divisor'] == 0):
continue
# Convert [[y0, x0, 0], ...] to [[y0, ...], [x0, ...], [0, ...]].
mask_index = tf.transpose(tf.where(panoptic_label == panoptic_id))
mask_y_index = mask_index[0]
mask_x_index = mask_index[1]
next_mask_index = None
next_mask_y_index = None
next_mask_x_index = None
if next_panoptic_label is not None:
next_mask_index = tf.transpose(
tf.where(next_panoptic_label == panoptic_id))
next_mask_y_index = next_mask_index[0]
next_mask_x_index = next_mask_index[1]
instance_area = tf.shape(mask_x_index)
if instance_area < self._instance_area_threshold:
semantic_weights = tf.where(panoptic_label == panoptic_id,
self._small_instance_weight,
semantic_weights)
centers = tf.reduce_mean(tf.cast(mask_index, tf.float32), axis=1)
center_x = tf.cast(tf.round(centers[1]), tf.int32)
center_y = tf.cast(tf.round(centers[0]), tf.int32)
# Due to the padding with center_pad_begin in center, the computed center
# becomes the upper left corner in the center tensor.
upper_left = center_x, center_y
bottom_right = (upper_left[0] + self._gaussian_size,
upper_left[1] + self._gaussian_size)
indices_x, indices_y = tf.meshgrid(
tf.range(upper_left[0], bottom_right[0]),
tf.range(upper_left[1], bottom_right[1]))
indices = tf.transpose(
tf.stack([tf.reshape(indices_y, [-1]),
tf.reshape(indices_x, [-1])]))
center = tf.tensor_scatter_nd_max(
center, indices, self._gaussian, name='center_scatter')
offset_y = tf.tensor_scatter_nd_update(
offset_y,
tf.transpose(mask_index),
center_y - tf.cast(mask_y_index, tf.int32),
name='offset_y_scatter')
offset_x = tf.tensor_scatter_nd_update(
offset_x,
tf.transpose(mask_index),
center_x - tf.cast(mask_x_index, tf.int32),
name='offset_x_scatter')
if prev_panoptic_label is not None:
mask = tf.equal(prev_unique_ids, panoptic_id)
if tf.math.count_nonzero(mask) > 0:
prev_center_x = prev_centers_x[mask]
prev_center_y = prev_centers_y[mask]
frame_offset_y = tf.tensor_scatter_nd_update(
frame_offset_y,
tf.transpose(mask_index),
prev_center_y - tf.cast(mask_y_index, tf.int32),
name='frame_offset_y_scatter')
frame_offset_x = tf.tensor_scatter_nd_update(
frame_offset_x,
tf.transpose(mask_index),
prev_center_x - tf.cast(mask_x_index, tf.int32),
name='frame_offset_x_scatter')
if next_panoptic_label is not None:
next_offset_y = tf.tensor_scatter_nd_update(
next_offset_y,
tf.transpose(next_mask_index),
center_y - tf.cast(next_mask_y_index, tf.int32),
name='next_offset_y_scatter')
next_offset_x = tf.tensor_scatter_nd_update(
next_offset_x,
tf.transpose(next_mask_index),
center_x - tf.cast(next_mask_x_index, tf.int32),
name='next_offset_x_scatter')
offset = tf.concat([offset_y, offset_x], axis=2)
center = center[center_pad_begin:(center_pad_begin + height),
center_pad_begin:(center_pad_begin + width)]
center = tf.expand_dims(center, -1)
if prev_panoptic_label is not None:
frame_offsets = tf.concat([frame_offset_y, frame_offset_x], axis=2)
if next_panoptic_label is not None:
next_offset = tf.concat([next_offset_y, next_offset_x], axis=2)
return (center, offset, semantic_weights, prev_center, frame_offsets,
next_offset)
|