File size: 3,481 Bytes
0924f30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
# coding=utf-8
# Copyright 2021 The Deeplab2 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Input reader to load segmentation dataset."""

import tensorflow as tf

_NUM_INPUTS_PROCESSED_CONCURRENTLY = 32
_SHUFFLE_BUFFER_SIZE = 1000


class InputReader(object):
  """Input function that creates a dataset from files."""

  def __init__(self,
               file_pattern,
               decoder_fn,
               generator_fn=None,
               is_training=False):
    """Initializes the input reader.

    Args:
      file_pattern: The file pattern for the data example, in TFRecord format
      decoder_fn: A callable that takes a serialized tf.Example and produces
        parsed (and potentially processed / augmented) tensors.
      generator_fn: An optional `callable` that takes the decoded raw tensors
        dict and generates a ground-truth dictionary that can be consumed by
        the model. It will be executed after decoder_fn (default: None).
      is_training: If this dataset is used for training or not (default: False).
    """
    self._file_pattern = file_pattern
    self._is_training = is_training
    self._decoder_fn = decoder_fn
    self._generator_fn = generator_fn

  def __call__(self, batch_size=1, max_num_examples=-1):
    """Provides tf.data.Dataset object.

    Args:
      batch_size: Expected batch size input data.
      max_num_examples: Positive integer or -1. If positive, the returned
        dataset will only take (at most) this number of examples and raise
        tf.errors.OutOfRangeError after that (default: -1).

    Returns:
      tf.data.Dataset object.
    """
    dataset = tf.data.Dataset.list_files(self._file_pattern)

    if self._is_training:
      # File level shuffle.
      dataset = dataset.shuffle(dataset.cardinality(),
                                reshuffle_each_iteration=True)
      dataset = dataset.repeat()

    # During training, interleave TFRecord conversion for maximum efficiency.
    # During evaluation, read input in consecutive order for tasks requiring
    # such behavior.
    dataset = dataset.interleave(
        map_func=tf.data.TFRecordDataset,
        cycle_length=(_NUM_INPUTS_PROCESSED_CONCURRENTLY
                      if self._is_training else 1),
        num_parallel_calls=tf.data.experimental.AUTOTUNE,
        deterministic=not self._is_training)

    if self._is_training:
      dataset = dataset.shuffle(_SHUFFLE_BUFFER_SIZE)
    if max_num_examples > 0:
      dataset = dataset.take(max_num_examples)

    # Parses the fetched records to input tensors for model function.
    dataset = dataset.map(
        self._decoder_fn, num_parallel_calls=tf.data.experimental.AUTOTUNE)
    if self._generator_fn is not None:
      dataset = dataset.map(
          self._generator_fn, num_parallel_calls=tf.data.experimental.AUTOTUNE)
    dataset = dataset.batch(batch_size, drop_remainder=True)
    dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE)
    return dataset