Spaces:
Runtime error
Runtime error
File size: 10,120 Bytes
27b57f6 e1eba2d 27b57f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
import collections
import os
import tempfile
from matplotlib import gridspec
from matplotlib import pyplot as plt
import numpy as np
from PIL import Image
import urllib
import tensorflow as tf
import gradio as gr
from subprocess import call
import sys
import requests
url1 = 'https://cdn.pixabay.com/photo/2014/09/07/21/52/city-438393_1280.jpg'
r = requests.get(url1, allow_redirects=True)
open("city1.jpg", 'wb').write(r.content)
url2 = 'https://cdn.pixabay.com/photo/2016/02/19/11/36/canal-1209808_1280.jpg'
r = requests.get(url2, allow_redirects=True)
open("city2.jpg", 'wb').write(r.content)
DatasetInfo = collections.namedtuple(
'DatasetInfo',
'num_classes, label_divisor, thing_list, colormap, class_names')
def _cityscapes_label_colormap():
"""Creates a label colormap used in CITYSCAPES segmentation benchmark.
See more about CITYSCAPES dataset at https://www.cityscapes-dataset.com/
M. Cordts, et al. "The Cityscapes Dataset for Semantic Urban Scene Understanding." CVPR. 2016.
Returns:
A 2-D numpy array with each row being mapped RGB color (in uint8 range).
"""
colormap = np.zeros((256, 3), dtype=np.uint8)
colormap[0] = [128, 64, 128]
colormap[1] = [244, 35, 232]
colormap[2] = [70, 70, 70]
colormap[3] = [102, 102, 156]
colormap[4] = [190, 153, 153]
colormap[5] = [153, 153, 153]
colormap[6] = [250, 170, 30]
colormap[7] = [220, 220, 0]
colormap[8] = [107, 142, 35]
colormap[9] = [152, 251, 152]
colormap[10] = [70, 130, 180]
colormap[11] = [220, 20, 60]
colormap[12] = [255, 0, 0]
colormap[13] = [0, 0, 142]
colormap[14] = [0, 0, 70]
colormap[15] = [0, 60, 100]
colormap[16] = [0, 80, 100]
colormap[17] = [0, 0, 230]
colormap[18] = [119, 11, 32]
return colormap
def _cityscapes_class_names():
return ('road', 'sidewalk', 'building', 'wall', 'fence', 'pole',
'traffic light', 'traffic sign', 'vegetation', 'terrain', 'sky',
'person', 'rider', 'car', 'truck', 'bus', 'train', 'motorcycle',
'bicycle')
def cityscapes_dataset_information():
return DatasetInfo(
num_classes=19,
label_divisor=1000,
thing_list=tuple(range(11, 19)),
colormap=_cityscapes_label_colormap(),
class_names=_cityscapes_class_names())
def perturb_color(color, noise, used_colors, max_trials=50, random_state=None):
"""Pertrubs the color with some noise.
If `used_colors` is not None, we will return the color that has
not appeared before in it.
Args:
color: A numpy array with three elements [R, G, B].
noise: Integer, specifying the amount of perturbing noise (in uint8 range).
used_colors: A set, used to keep track of used colors.
max_trials: An integer, maximum trials to generate random color.
random_state: An optional np.random.RandomState. If passed, will be used to
generate random numbers.
Returns:
A perturbed color that has not appeared in used_colors.
"""
if random_state is None:
random_state = np.random
for _ in range(max_trials):
random_color = color + random_state.randint(
low=-noise, high=noise + 1, size=3)
random_color = np.clip(random_color, 0, 255)
if tuple(random_color) not in used_colors:
used_colors.add(tuple(random_color))
return random_color
print('Max trial reached and duplicate color will be used. Please consider '
'increase noise in `perturb_color()`.')
return random_color
def color_panoptic_map(panoptic_prediction, dataset_info, perturb_noise):
"""Helper method to colorize output panoptic map.
Args:
panoptic_prediction: A 2D numpy array, panoptic prediction from deeplab
model.
dataset_info: A DatasetInfo object, dataset associated to the model.
perturb_noise: Integer, the amount of noise (in uint8 range) added to each
instance of the same semantic class.
Returns:
colored_panoptic_map: A 3D numpy array with last dimension of 3, colored
panoptic prediction map.
used_colors: A dictionary mapping semantic_ids to a set of colors used
in `colored_panoptic_map`.
"""
if panoptic_prediction.ndim != 2:
raise ValueError('Expect 2-D panoptic prediction. Got {}'.format(
panoptic_prediction.shape))
semantic_map = panoptic_prediction // dataset_info.label_divisor
instance_map = panoptic_prediction % dataset_info.label_divisor
height, width = panoptic_prediction.shape
colored_panoptic_map = np.zeros((height, width, 3), dtype=np.uint8)
used_colors = collections.defaultdict(set)
# Use a fixed seed to reproduce the same visualization.
random_state = np.random.RandomState(0)
unique_semantic_ids = np.unique(semantic_map)
for semantic_id in unique_semantic_ids:
semantic_mask = semantic_map == semantic_id
if semantic_id in dataset_info.thing_list:
# For `thing` class, we will add a small amount of random noise to its
# correspondingly predefined semantic segmentation colormap.
unique_instance_ids = np.unique(instance_map[semantic_mask])
for instance_id in unique_instance_ids:
instance_mask = np.logical_and(semantic_mask,
instance_map == instance_id)
random_color = perturb_color(
dataset_info.colormap[semantic_id],
perturb_noise,
used_colors[semantic_id],
random_state=random_state)
colored_panoptic_map[instance_mask] = random_color
else:
# For `stuff` class, we use the defined semantic color.
colored_panoptic_map[semantic_mask] = dataset_info.colormap[semantic_id]
used_colors[semantic_id].add(tuple(dataset_info.colormap[semantic_id]))
return colored_panoptic_map, used_colors
def vis_segmentation(image,
panoptic_prediction,
dataset_info,
perturb_noise=60):
"""Visualizes input image, segmentation map and overlay view."""
plt.figure(figsize=(30, 20))
grid_spec = gridspec.GridSpec(2, 2)
ax = plt.subplot(grid_spec[0])
plt.imshow(image)
plt.axis('off')
ax.set_title('input image', fontsize=20)
ax = plt.subplot(grid_spec[1])
panoptic_map, used_colors = color_panoptic_map(panoptic_prediction,
dataset_info, perturb_noise)
plt.imshow(panoptic_map)
plt.axis('off')
ax.set_title('panoptic map', fontsize=20)
ax = plt.subplot(grid_spec[2])
plt.imshow(image)
plt.imshow(panoptic_map, alpha=0.7)
plt.axis('off')
ax.set_title('panoptic overlay', fontsize=20)
ax = plt.subplot(grid_spec[3])
max_num_instances = max(len(color) for color in used_colors.values())
# RGBA image as legend.
legend = np.zeros((len(used_colors), max_num_instances, 4), dtype=np.uint8)
class_names = []
for i, semantic_id in enumerate(sorted(used_colors)):
legend[i, :len(used_colors[semantic_id]), :3] = np.array(
list(used_colors[semantic_id]))
legend[i, :len(used_colors[semantic_id]), 3] = 255
if semantic_id < dataset_info.num_classes:
class_names.append(dataset_info.class_names[semantic_id])
else:
class_names.append('ignore')
plt.imshow(legend, interpolation='nearest')
ax.yaxis.tick_left()
plt.yticks(range(len(legend)), class_names, fontsize=15)
plt.xticks([], [])
ax.tick_params(width=0.0, grid_linewidth=0.0)
plt.grid('off')
return plt
def run_cmd(command):
try:
print(command)
call(command, shell=True)
except KeyboardInterrupt:
print("Process interrupted")
sys.exit(1)
MODEL_NAME = 'max_deeplab_l_backbone_os16_axial_deeplab_cityscapes_trainfine_saved_model'
_MODELS = ('resnet50_os32_panoptic_deeplab_cityscapes_crowd_trainfine_saved_model',
'resnet50_beta_os32_panoptic_deeplab_cityscapes_trainfine_saved_model',
'wide_resnet41_os16_panoptic_deeplab_cityscapes_trainfine_saved_model',
'swidernet_sac_1_1_1_os16_panoptic_deeplab_cityscapes_trainfine_saved_model',
'swidernet_sac_1_1_3_os16_panoptic_deeplab_cityscapes_trainfine_saved_model',
'swidernet_sac_1_1_4.5_os16_panoptic_deeplab_cityscapes_trainfine_saved_model',
'axial_swidernet_1_1_1_os16_axial_deeplab_cityscapes_trainfine_saved_model',
'axial_swidernet_1_1_3_os16_axial_deeplab_cityscapes_trainfine_saved_model',
'axial_swidernet_1_1_4.5_os16_axial_deeplab_cityscapes_trainfine_saved_model',
'max_deeplab_s_backbone_os16_axial_deeplab_cityscapes_trainfine_saved_model',
'max_deeplab_l_backbone_os16_axial_deeplab_cityscapes_trainfine_saved_model')
_DOWNLOAD_URL_PATTERN = 'https://storage.googleapis.com/gresearch/tf-deeplab/saved_model/%s.tar.gz'
_MODEL_NAME_TO_URL_AND_DATASET = {
model: (_DOWNLOAD_URL_PATTERN % model, cityscapes_dataset_information())
for model in _MODELS
}
MODEL_URL, DATASET_INFO = _MODEL_NAME_TO_URL_AND_DATASET[MODEL_NAME]
model_dir = tempfile.mkdtemp()
download_path = os.path.join(model_dir, MODEL_NAME + '.gz')
urllib.request.urlretrieve(MODEL_URL, download_path)
run_cmd("tar -xzvf " + download_path + " -C " + model_dir)
LOADED_MODEL = tf.saved_model.load(os.path.join(model_dir, MODEL_NAME))
def inference(image):
image = image.resize(size=(512, 512))
im = np.array(image)
output = LOADED_MODEL(tf.cast(im, tf.uint8))
return vis_segmentation(im, output['panoptic_pred'][0], DATASET_INFO)
title = "Deeplab2 - Max Deeplab L"
description = "demo for Deeplab2. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below.\nModel: max_deeplab_l_backbone_os16_axial_deeplab_cityscapes_trainfine_saved_model"
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2106.09748'>DeepLab2: A TensorFlow Library for Deep Labeling</a> | <a href='https://github.com/google-research/deeplab2'>Github Repo</a></p>"
gr.Interface(
inference,
[gr.inputs.Image(type="pil", label="Input")],
gr.outputs.Image(type="plot", label="Output"),
title=title,
description=description,
article=article,
examples=[
["city1.jpg"],
["city2.jpg"]
]).launch()
|