Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2021 The Deeplab2 Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for axial_resnet.""" | |
import numpy as np | |
import tensorflow as tf | |
from deeplab2.model.encoder import axial_resnet | |
class AxialResNetTest(tf.test.TestCase): | |
def test_axial_resnet_correct_output_shape(self): | |
model = axial_resnet.AxialResNet('max_deeplab_s') | |
endpoints = model(tf.zeros([2, 65, 65, 3]), training=False) | |
self.assertListEqual(endpoints['backbone_output'].get_shape().as_list(), | |
[2, 5, 5, 2048]) | |
self.assertListEqual( | |
endpoints['transformer_class_feature'].get_shape().as_list(), | |
[2, 128, 256]) | |
self.assertListEqual( | |
endpoints['transformer_mask_feature'].get_shape().as_list(), | |
[2, 128, 256]) | |
self.assertListEqual(endpoints['feature_panoptic'].get_shape().as_list(), | |
[2, 17, 17, 256]) | |
self.assertListEqual(endpoints['feature_semantic'].get_shape().as_list(), | |
[2, 5, 5, 2048]) | |
num_params = np.sum( | |
[np.prod(v.get_shape().as_list()) for v in model.trainable_weights]) | |
self.assertEqual(num_params, 61726624) | |
if __name__ == '__main__': | |
tf.test.main() | |