Spaces:
Runtime error
Runtime error
File size: 10,874 Bytes
d1843be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
# coding=utf-8
# Copyright 2021 The Deeplab2 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This file contains code to create a Trainer for training and validation."""
from typing import Dict, Any, Text
import orbit
import tensorflow as tf
from deeplab2 import common
from deeplab2 import config_pb2
from deeplab2.model import utils
from deeplab2.trainer import runner_utils
class WarmUp(tf.keras.optimizers.schedules.LearningRateSchedule):
"""Applies a warmup schedule on a given learning rate decay schedule."""
def __init__(self,
initial_learning_rate,
decay_schedule_fn,
warmup_steps,
name=None):
super(WarmUp, self).__init__()
self.initial_learning_rate = initial_learning_rate
self.warmup_steps = warmup_steps
self.decay_schedule_fn = decay_schedule_fn
self.name = name
def __call__(self, step):
with tf.name_scope(self.name or 'WarmUp') as name:
# Implements linear warmup. i.e., if global_step < warmup_steps, the
# learning rate will be `global_step/num_warmup_steps * init_lr`.
global_step_float = tf.cast(step, tf.float32)
warmup_steps_float = tf.cast(self.warmup_steps, tf.float32)
warmup_percent_done = global_step_float / warmup_steps_float
warmup_learning_rate = self.initial_learning_rate * warmup_percent_done
return tf.cond(
global_step_float < warmup_steps_float,
lambda: warmup_learning_rate,
lambda: self.decay_schedule_fn(step),
name=name)
def get_config(self):
return {
'initial_learning_rate': self.initial_learning_rate,
'decay_schedule_fn': self.decay_schedule_fn,
'warmup_steps': self.warmup_steps,
'name': self.name
}
def _create_optimizer(
solver_config: config_pb2.SolverOptions,
learning_rate_multiplier: float = 1.0) -> tf.keras.optimizers.Optimizer:
"""Creates an Optimizer based on the configuration.
Args:
solver_config: A trainer_pb2.SolverOptions configuration.
learning_rate_multiplier: A float, the learning rate multiplier applied on
top of the base learning rate. Default to 1.0.
Returns:
A tf.keras.optimizer.Optimizer.
Raises:
ValueError: An error occurs when the desired optimizer or learning rate
scheduler is not supported.
"""
learning_rate = (solver_config.base_learning_rate * learning_rate_multiplier)
if solver_config.learning_policy == 'poly':
lr_scheduler = tf.keras.optimizers.schedules.PolynomialDecay(
initial_learning_rate=learning_rate,
decay_steps=solver_config.training_number_of_steps,
end_learning_rate=solver_config.poly_end_learning_rate,
power=solver_config.poly_learning_power,
cycle=False)
elif solver_config.learning_policy == 'cosine':
lr_scheduler = tf.keras.experimental.CosineDecay(
initial_learning_rate=learning_rate,
decay_steps=solver_config.training_number_of_steps,
alpha=0.0)
else:
raise ValueError('Learning rate policy %s is not supported.' %
solver_config.learning_policy)
if solver_config.warmup_steps:
lr_scheduler = WarmUp(
initial_learning_rate=learning_rate,
decay_schedule_fn=lr_scheduler,
warmup_steps=solver_config.warmup_steps,
name='linear_warmup')
if solver_config.optimizer == 'adam':
return tf.keras.optimizers.Adam(learning_rate=lr_scheduler)
elif solver_config.optimizer == 'sgd':
# We use momentum = 0.9, the most frequently used case.
return tf.keras.optimizers.SGD(learning_rate=lr_scheduler,
momentum=0.9)
raise ValueError('Optimizer %s is not supported.' % solver_config.optimizer)
class Trainer(orbit.StandardTrainer):
"""Implements a Trainer for training DeepLab models."""
def __init__(self, config: config_pb2.ExperimentOptions,
model: tf.keras.Model, loss: tf.keras.losses.Loss,
global_step: tf.Variable):
"""Initializes the trainer.
Args:
config: A config_pb2.ExperimentOptions configuration.
model: A tf.keras.Model.
loss: A tf.keras.losses.Loss.
global_step: A tf.Variable that records the global training step.
"""
self._strategy = tf.distribute.get_strategy()
support_panoptic = (common.TASK_PANOPTIC_SEGMENTATION in
utils.get_supported_tasks(config))
train_dataset = runner_utils.create_dataset(
config.train_dataset_options,
is_training=True,
only_semantic_annotations=not support_panoptic)
train_dataset = orbit.utils.make_distributed_dataset(
self.strategy, train_dataset)
super(Trainer, self).__init__(train_dataset)
self._config = config
self._model = model
self._loss = loss
solver_options = config.trainer_options.solver_options
self._optimizer = _create_optimizer(solver_options)
self._backbone_optimizer = None
if solver_options.HasField('backbone_learning_rate_multiplier'):
self._backbone_optimizer = _create_optimizer(
solver_options, learning_rate_multiplier=(
solver_options.backbone_learning_rate_multiplier))
self._global_step = global_step
self._use_gradient_clipping = solver_options.use_gradient_clipping
self._clip_gradient_norm = solver_options.clip_gradient_norm
self._train_loss_metric_dict = runner_utils.create_loss_metric_dict(
loss.get_loss_names(), prefix='train_')
def train_loop_begin(self):
"""Called once at the beginning of the training loop.
This method is called before dataset iterators creation.
"""
for metric in self._train_loss_metric_dict.values():
metric.reset_states()
def _apply_gradients_to_optimizers(self, gradients_and_variables):
"""Applies gradients to their optimizers.
This function divides all trainable variables (and their gradients) into
two groups. One group contains backbone variables that have been pretrained,
e.g., on ImageNet classification. The other group contains all other
variables that are added specifically for the dense prediction task, e.g.,
panoptic segmentation. Then, we apply two optimizers, optionally with two
learning rates, to the variables and gradients.
Args:
gradients_and_variables: A list of tuple of (gradient, variable) tensors.
"""
if self._backbone_optimizer is None:
self._optimizer.apply_gradients(gradients_and_variables)
else:
optimizer_inputs = []
backbone_optimizer_inputs = []
encoder = self._model.checkpoint_items['encoder']
encoder_variable_names = [x.name for x in encoder.trainable_variables]
encoder_name = self._config.model_options.backbone.name
for gradient, variable in gradients_and_variables:
if runner_utils.check_if_variable_in_backbone(variable, encoder_name,
encoder_variable_names):
backbone_optimizer_inputs.append((gradient, variable))
else:
optimizer_inputs.append((gradient, variable))
self._optimizer.apply_gradients(optimizer_inputs)
self._backbone_optimizer.apply_gradients(backbone_optimizer_inputs)
def train_step(self, iterator):
"""Implements one step of training.
Runs one step of evaluation with respect to the chosen strategy. In case of
a distributed strategy, the replica results are gathered and returned.
Note that all operations within `_train_step` are tf.function compatible, as
they will be traced with tf.function. Any other/numpy operations are put in
`train_loop_begin` or `train_loop_end` functions.
Args:
iterator: A tf.nest-compatible structure of tf.data Iterator or
DistributedIterator.
"""
def step_fn(inputs):
self._train_step(inputs)
self._global_step.assign_add(1)
self._strategy.run(step_fn, args=(next(iterator),))
def _train_step(self, inputs: Dict[Text, Any]):
"""Performs a forward and backward pass.
Args:
inputs: A dictionary to be consumed by the model.
"""
with tf.GradientTape() as tape:
outputs = self._model(inputs[common.IMAGE], training=True)
# Get the average per-batch loss and scale it down by the number of
# replicas. This ensures that we don't end up multiplying our loss by the
# number of workers - gradients are summed, not averaged, across replicas
# during the apply_gradients call.
loss_dict = self._loss(inputs, outputs)
# Average over the batch.
average_loss_dict = {
key: tf.reduce_mean(value) for key, value in loss_dict.items()}
total_loss = average_loss_dict[common.TOTAL_LOSS]
scaled_loss = total_loss / self.strategy.num_replicas_in_sync
training_vars = self._model.trainable_variables
gradients = tape.gradient(scaled_loss, training_vars)
# Apply gradient clipping.
if self._clip_gradient_norm > 0.0 and self._use_gradient_clipping:
gradients, _ = tf.clip_by_global_norm(gradients, self._clip_gradient_norm)
self._apply_gradients_to_optimizers(list(zip(gradients, training_vars)))
for name, value in average_loss_dict.items():
self._train_loss_metric_dict[name].update_state(value)
def train_loop_end(self) -> Dict[Text, tf.Tensor]:
"""Called at the end of the training loop.
The value returned from this function will be returned as-is from the
train() method.
Returns:
A dictionary of `Tensors`, which will be written to logs and as
TensorBoard summaries.
"""
train_logs = {}
for loss_metric in self._train_loss_metric_dict.values():
train_logs['losses/' + loss_metric.name] = loss_metric.result()
if callable(self._optimizer.learning_rate):
train_logs['learning_rate'] = self._optimizer.learning_rate(
self._global_step)
else:
train_logs['learning_rate'] = self._optimizer.learning_rate
return train_logs
@property
def optimizer(self):
return self._optimizer
@property
def backbone_optimizer(self):
return self._backbone_optimizer
@property
def strategy(self):
return self._strategy
@property
def global_step(self):
return self._global_step
@property
def model(self):
return self._model
|