Spaces:
Runtime error
Runtime error
File size: 11,253 Bytes
d1843be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
# coding=utf-8
# Copyright 2021 The Deeplab2 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for the evaluator."""
import os
import tempfile
from unittest import mock
from absl import flags
import numpy as np
import tensorflow as tf
from google.protobuf import text_format
from deeplab2 import common
from deeplab2 import config_pb2
from deeplab2 import trainer_pb2
from deeplab2.data import data_utils
from deeplab2.data import dataset
from deeplab2.data import sample_generator
from deeplab2.model import deeplab
from deeplab2.model.loss import loss_builder
from deeplab2.trainer import evaluator
from deeplab2.trainer import runner_utils
# resources dependency
_CONFIG_PATH = 'deeplab2/configs/example'
flags.DEFINE_string(
'panoptic_annotation_data',
'deeplab2/data/testdata/',
'Path to annotated test image.')
FLAGS = flags.FLAGS
_FILENAME_PREFIX = 'dummy_000000_000000'
_IMAGE_FOLDER = 'leftImg8bit/'
def _read_proto_file(filename, proto):
filename = filename # OSS: removed internal filename loading.
with tf.io.gfile.GFile(filename, 'r') as proto_file:
return text_format.ParseLines(proto_file, proto)
def _create_panoptic_deeplab_loss(dataset_info):
semantic_loss_options = trainer_pb2.LossOptions.SingleLossOptions(
name='softmax_cross_entropy')
center_loss_options = trainer_pb2.LossOptions.SingleLossOptions(name='mse')
regression_loss_options = trainer_pb2.LossOptions.SingleLossOptions(
name='l1')
loss_options = trainer_pb2.LossOptions(
semantic_loss=semantic_loss_options,
center_loss=center_loss_options,
regression_loss=regression_loss_options)
loss_layer = loss_builder.DeepLabFamilyLoss(
loss_options,
num_classes=dataset_info.num_classes,
ignore_label=dataset_info.ignore_label,
thing_class_ids=dataset_info.class_has_instances_list)
return loss_layer
def _create_max_deeplab_loss(dataset_info):
semantic_loss_options = trainer_pb2.LossOptions.SingleLossOptions(
name='softmax_cross_entropy')
pq_style_loss_options = trainer_pb2.LossOptions.SingleLossOptions()
mask_id_cross_entropy_loss_options = (
trainer_pb2.LossOptions.SingleLossOptions())
instance_discrimination_loss_options = (
trainer_pb2.LossOptions.SingleLossOptions())
loss_options = trainer_pb2.LossOptions(
semantic_loss=semantic_loss_options,
pq_style_loss=pq_style_loss_options,
mask_id_cross_entropy_loss=mask_id_cross_entropy_loss_options,
instance_discrimination_loss=instance_discrimination_loss_options)
loss_layer = loss_builder.DeepLabFamilyLoss(
loss_options,
num_classes=dataset_info.num_classes,
ignore_label=dataset_info.ignore_label,
thing_class_ids=dataset_info.class_has_instances_list)
return loss_layer
class RealDataEvaluatorTest(tf.test.TestCase):
def setUp(self):
super().setUp()
self._test_img_data_dir = os.path.join(
FLAGS.test_srcdir,
FLAGS.panoptic_annotation_data,
_IMAGE_FOLDER)
self._test_gt_data_dir = os.path.join(
FLAGS.test_srcdir,
FLAGS.panoptic_annotation_data)
image_path = self._test_img_data_dir + _FILENAME_PREFIX + '_leftImg8bit.png'
with tf.io.gfile.GFile(image_path, 'rb') as image_file:
rgb_image = data_utils.read_image(image_file.read())
self._rgb_image = tf.convert_to_tensor(np.array(rgb_image))
label_path = self._test_gt_data_dir + 'dummy_gt_for_vps.png'
with tf.io.gfile.GFile(label_path, 'rb') as label_file:
label = data_utils.read_image(label_file.read())
self._label = tf.expand_dims(tf.convert_to_tensor(
np.dot(np.array(label), [1, 256, 256 * 256])), -1)
def test_evaluates_max_deeplab_model(self):
tf.random.set_seed(0)
np.random.seed(0)
small_instances = {'threshold': 4096, 'weight': 1.0}
generator = sample_generator.PanopticSampleGenerator(
dataset.CITYSCAPES_PANOPTIC_INFORMATION._asdict(),
focus_small_instances=small_instances,
is_training=False,
crop_size=[769, 769],
thing_id_mask_annotations=True)
input_sample = {
'image': self._rgb_image,
'image_name': 'test_image',
'label': self._label,
'height': 800,
'width': 800
}
sample = generator(input_sample)
experiment_options_textproto = """
experiment_name: "evaluation_test"
eval_dataset_options {
dataset: "cityscapes_panoptic"
file_pattern: "EMPTY"
batch_size: 1
crop_size: 769
crop_size: 769
thing_id_mask_annotations: true
}
evaluator_options {
continuous_eval_timeout: 43200
stuff_area_limit: 2048
center_score_threshold: 0.1
nms_kernel: 13
save_predictions: true
save_raw_predictions: false
}
"""
config = text_format.Parse(experiment_options_textproto,
config_pb2.ExperimentOptions())
model_proto_filename = os.path.join(
_CONFIG_PATH, 'example_coco_max_deeplab.textproto')
model_config = _read_proto_file(model_proto_filename,
config_pb2.ExperimentOptions())
config.model_options.CopyFrom(model_config.model_options)
config.model_options.max_deeplab.auxiliary_semantic_head.output_channels = (
19)
model = deeplab.DeepLab(config, dataset.CITYSCAPES_PANOPTIC_INFORMATION)
pool_size = (49, 49)
model.set_pool_size(pool_size)
loss_layer = _create_max_deeplab_loss(
dataset.CITYSCAPES_PANOPTIC_INFORMATION)
global_step = tf.Variable(initial_value=0, dtype=tf.int64)
batched_sample = {}
for key, value in sample.items():
batched_sample[key] = tf.expand_dims(value, axis=0)
real_data = [batched_sample]
with tempfile.TemporaryDirectory() as model_dir:
with mock.patch.object(runner_utils, 'create_dataset'):
ev = evaluator.Evaluator(
config, model, loss_layer, global_step, model_dir)
state = ev.eval_begin()
# Verify that output directories are created.
self.assertTrue(os.path.isdir(os.path.join(model_dir, 'vis')))
step_outputs = ev.eval_step(iter(real_data))
state = ev.eval_reduce(state, step_outputs)
result = ev.eval_end(state)
expected_metric_keys = {
'losses/eval_' + common.TOTAL_LOSS,
'losses/eval_' + common.SEMANTIC_LOSS,
'losses/eval_' + common.PQ_STYLE_LOSS_CLASS_TERM,
'losses/eval_' + common.PQ_STYLE_LOSS_MASK_DICE_TERM,
'losses/eval_' + common.MASK_ID_CROSS_ENTROPY_LOSS,
'losses/eval_' + common.INSTANCE_DISCRIMINATION_LOSS,
'evaluation/iou/IoU',
'evaluation/pq/PQ',
'evaluation/pq/SQ',
'evaluation/pq/RQ',
'evaluation/pq/TP',
'evaluation/pq/FN',
'evaluation/pq/FP',
}
self.assertCountEqual(result.keys(), expected_metric_keys)
self.assertSequenceEqual(result['losses/eval_total_loss'].shape, ())
class EvaluatorTest(tf.test.TestCase):
def test_evaluates_panoptic_deeplab_model(self):
experiment_options_textproto = """
experiment_name: "evaluation_test"
eval_dataset_options {
dataset: "cityscapes_panoptic"
file_pattern: "EMPTY"
batch_size: 1
crop_size: 1025
crop_size: 2049
# Skip resizing.
min_resize_value: 0
max_resize_value: 0
}
evaluator_options {
continuous_eval_timeout: 43200
stuff_area_limit: 2048
center_score_threshold: 0.1
nms_kernel: 13
save_predictions: true
save_raw_predictions: false
}
"""
config = text_format.Parse(experiment_options_textproto,
config_pb2.ExperimentOptions())
model_proto_filename = os.path.join(
_CONFIG_PATH, 'example_cityscapes_panoptic_deeplab.textproto')
model_config = _read_proto_file(model_proto_filename,
config_pb2.ExperimentOptions())
config.model_options.CopyFrom(model_config.model_options)
model = deeplab.DeepLab(config, dataset.CITYSCAPES_PANOPTIC_INFORMATION)
pool_size = (33, 65)
model.set_pool_size(pool_size)
loss_layer = _create_panoptic_deeplab_loss(
dataset.CITYSCAPES_PANOPTIC_INFORMATION)
global_step = tf.Variable(initial_value=0, dtype=tf.int64)
fake_datum = {
common.IMAGE:
tf.zeros([1, 1025, 2049, 3]),
common.RESIZED_IMAGE:
tf.zeros([1, 1025, 2049, 3]),
common.GT_SIZE_RAW:
tf.constant([[1025, 2049]], dtype=tf.int32),
common.GT_SEMANTIC_KEY:
tf.zeros([1, 1025, 2049], dtype=tf.int32),
common.GT_SEMANTIC_RAW:
tf.zeros([1, 1025, 2049], dtype=tf.int32),
common.GT_PANOPTIC_RAW:
tf.zeros([1, 1025, 2049], dtype=tf.int32),
common.GT_IS_CROWD_RAW:
tf.zeros([1, 1025, 2049], dtype=tf.uint8),
common.GT_INSTANCE_CENTER_KEY:
tf.zeros([1, 1025, 2049], dtype=tf.float32),
common.GT_INSTANCE_REGRESSION_KEY:
tf.zeros([1, 1025, 2049, 2], dtype=tf.float32),
common.IMAGE_NAME:
'fake',
common.SEMANTIC_LOSS_WEIGHT_KEY:
tf.zeros([1, 1025, 2049], dtype=tf.float32),
common.CENTER_LOSS_WEIGHT_KEY:
tf.zeros([1, 1025, 2049], dtype=tf.float32),
common.REGRESSION_LOSS_WEIGHT_KEY:
tf.zeros([1, 1025, 2049], dtype=tf.float32),
}
fake_data = [fake_datum]
with tempfile.TemporaryDirectory() as model_dir:
with mock.patch.object(runner_utils, 'create_dataset'):
ev = evaluator.Evaluator(
config, model, loss_layer, global_step, model_dir)
state = ev.eval_begin()
# Verify that output directories are created.
self.assertTrue(os.path.isdir(os.path.join(model_dir, 'vis')))
step_outputs = ev.eval_step(iter(fake_data))
state = ev.eval_reduce(state, step_outputs)
result = ev.eval_end(state)
expected_metric_keys = {
'losses/eval_total_loss',
'losses/eval_semantic_loss',
'losses/eval_center_loss',
'losses/eval_regression_loss',
'evaluation/iou/IoU',
'evaluation/pq/PQ',
'evaluation/pq/SQ',
'evaluation/pq/RQ',
'evaluation/pq/TP',
'evaluation/pq/FN',
'evaluation/pq/FP',
'evaluation/ap/AP_Mask',
}
self.assertCountEqual(result.keys(), expected_metric_keys)
self.assertSequenceEqual(result['losses/eval_total_loss'].shape, ())
self.assertEqual(result['losses/eval_total_loss'].numpy(), 0.0)
if __name__ == '__main__':
tf.test.main()
|