Spaces:
Runtime error
Runtime error
File size: 17,336 Bytes
d1843be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 |
# coding=utf-8
# Copyright 2021 The Deeplab2 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This file contains code to create an evaluator runner.
Note that the evaluator is not well-optimized for inference speed. There are
some redundant outputs, e.g., visualization results, evaluation loss, and so
on. We still compute them in this implementation with the goal to provide more
detailed information for research development. One should remove those
redundant outputs for a faster inference speed.
"""
import os
import orbit
import tensorflow as tf
from deeplab2 import common
from deeplab2.data import dataset
from deeplab2.evaluation import coco_instance_ap as instance_ap
from deeplab2.evaluation import panoptic_quality
from deeplab2.evaluation import segmentation_and_tracking_quality as stq
from deeplab2.evaluation import video_panoptic_quality as vpq
from deeplab2.model import utils
from deeplab2.trainer import runner_utils
from deeplab2.trainer import vis
_PANOPTIC_METRIC_OFFSET = 256 * 256
# Video Panoptic Segmentation requires a larger offset value for accommodating
# more instance IDs.
_VIDEO_PANOPTIC_METRIC_OFFSET = _PANOPTIC_METRIC_OFFSET * 256
_PREDICTIONS_KEY = 'unique_key_for_storing_predictions'
_LABELS_KEY = 'unique_key_for_storing_labels'
class Evaluator(orbit.StandardEvaluator):
"""Implements an evaluator for DeepLab models."""
def __init__(self, config, model, loss, global_step, model_dir):
"""Initializes the Evaluator.
Args:
config: A config_pb2.ExperimentOptions configuration.
model: A tf.keras.Model.
loss: A tf.keras.losses.Loss.
global_step: A tf.Variable that records the global training step.
model_dir: A path to store all experimental artifacts.
"""
self._strategy = tf.distribute.get_strategy()
self._supported_tasks = utils.get_supported_tasks(config)
eval_dataset = runner_utils.create_dataset(
config.eval_dataset_options,
is_training=False,
only_semantic_annotations=(
common.TASK_PANOPTIC_SEGMENTATION not in self._supported_tasks))
eval_dataset = orbit.utils.make_distributed_dataset(self._strategy,
eval_dataset)
evaluator_options_override = orbit.StandardEvaluatorOptions(
config.evaluator_options.use_tf_function)
super(Evaluator, self).__init__(eval_dataset, evaluator_options_override)
self._config = config
self._model = model
self._loss = loss
self._global_step = global_step
self._sample_counter = 0
self._enable_visualization = config.evaluator_options.save_predictions
self._num_vis_samples = config.evaluator_options.num_vis_samples
self._save_raw_predictions = config.evaluator_options.save_raw_predictions
self._decode_groundtruth_label = (
config.eval_dataset_options.decode_groundtruth_label)
if config.evaluator_options.HasField('override_save_dir'):
self._vis_dir = config.evaluator_options.override_save_dir
else:
self._vis_dir = os.path.join(model_dir, 'vis')
self._dataset_info = dataset.MAP_NAME_TO_DATASET_INFO[
config.eval_dataset_options.dataset]
# Create eval loss metrics.
self._eval_loss_metric_dict = runner_utils.create_loss_metric_dict(
loss.get_loss_names(), prefix='eval_')
# Create metrics (PQ, IoU).
self._ignore_label = self._dataset_info.ignore_label
self._eval_iou_metric = tf.keras.metrics.MeanIoU(
self._dataset_info.num_classes, 'IoU')
if common.TASK_PANOPTIC_SEGMENTATION in self._supported_tasks:
self._eval_pq_metric = panoptic_quality.PanopticQuality(
self._dataset_info.num_classes,
self._dataset_info.ignore_label,
self._dataset_info.panoptic_label_divisor,
offset=_PANOPTIC_METRIC_OFFSET)
if common.TASK_INSTANCE_SEGMENTATION in self._supported_tasks:
self._eval_ap_metric = instance_ap.PanopticInstanceAveragePrecision(
self._dataset_info.num_classes,
self._dataset_info.class_has_instances_list,
self._dataset_info.panoptic_label_divisor,
self._dataset_info.ignore_label)
if common.TASK_VIDEO_PANOPTIC_SEGMENTATION in self._supported_tasks:
self._eval_tracking_metric = stq.STQuality(
self._dataset_info.num_classes,
self._dataset_info.class_has_instances_list,
self._dataset_info.ignore_label,
self._dataset_info.panoptic_label_divisor,
offset=_VIDEO_PANOPTIC_METRIC_OFFSET)
if (common.TASK_DEPTH_AWARE_VIDEO_PANOPTIC_SEGMENTATION
in self._supported_tasks):
# We compute two-frame video panoptic quality as an additional metric
# for the task of depth-aware video panoptic segmentation.
self._eval_vpq_metric = vpq.VideoPanopticQuality(
self._dataset_info.num_classes,
self._dataset_info.ignore_label,
self._dataset_info.panoptic_label_divisor,
offset=_VIDEO_PANOPTIC_METRIC_OFFSET)
def _reset(self):
for metric in self._eval_loss_metric_dict.values():
metric.reset_states()
self._eval_iou_metric.reset_states()
if common.TASK_PANOPTIC_SEGMENTATION in self._supported_tasks:
self._eval_pq_metric.reset_states()
if common.TASK_INSTANCE_SEGMENTATION in self._supported_tasks:
self._eval_ap_metric.reset_states()
if common.TASK_VIDEO_PANOPTIC_SEGMENTATION in self._supported_tasks:
self._eval_tracking_metric.reset_states()
if (common.TASK_DEPTH_AWARE_VIDEO_PANOPTIC_SEGMENTATION
in self._supported_tasks):
self._eval_vpq_metric.reset_states()
self._sample_counter = 0
def eval_begin(self):
"""Called once at the beginning of the evaluation.
This method is called before dataset iterators creation.
"""
self._reset()
tf.io.gfile.makedirs(self._vis_dir)
if self._save_raw_predictions:
tf.io.gfile.makedirs(
os.path.join(self._vis_dir, 'raw_semantic'))
if common.TASK_PANOPTIC_SEGMENTATION in self._supported_tasks:
tf.io.gfile.makedirs(
os.path.join(self._vis_dir, 'raw_panoptic'))
def eval_step(self, iterator):
"""Implements one step of evaluation.
Runs one step of evaluation with respect to the chosen strategy. In case of
a distributed strategy, the replica results are gathered and returned.
Note that all operations within `_eval_step` are tf.function compatible, as
they will be traced with tf.function. Any other/numpy operations are put in
`eval_begin`, `eval_end` or `eval_reduce` functions.
Args:
iterator: A tf.nest-compatible structure of tf.data Iterator or
DistributedIterator.
Returns:
An output which is passed as `step_outputs` argument into `eval_reduce`
function.
"""
def step_fn(inputs):
step_outputs = self._eval_step(inputs)
return step_outputs
distributed_outputs = self._strategy.run(step_fn, args=(next(iterator),))
return tf.nest.map_structure(self._strategy.experimental_local_results,
distributed_outputs)
def _eval_step(self, inputs):
tf.assert_equal(tf.shape(inputs[common.IMAGE])[0], 1, 'Currently only a '
'batchsize of 1 is supported in evaluation due to resizing.'
)
outputs = self._model(inputs[common.IMAGE], training=False)
raw_size = [
inputs[common.GT_SIZE_RAW][0, 0], inputs[common.GT_SIZE_RAW][0, 1]
]
resized_size = [
tf.shape(inputs[common.RESIZED_IMAGE])[1],
tf.shape(inputs[common.RESIZED_IMAGE])[2],
]
step_outputs = {}
if self._decode_groundtruth_label:
loss_dict = self._loss(inputs, outputs)
# Average over the batch.
average_loss_dict = {
key: tf.reduce_mean(value) for key, value in loss_dict.items()}
for name, value in average_loss_dict.items():
self._eval_loss_metric_dict[name].update_state(value)
# We only undo-preprocess for those defined in tuples in model/utils.py.
outputs = utils.undo_preprocessing(outputs, resized_size,
raw_size)
self._eval_iou_metric.update_state(
tf.where(
tf.equal(inputs[common.GT_SEMANTIC_RAW], self._ignore_label),
0,
inputs[common.GT_SEMANTIC_RAW]),
outputs[common.PRED_SEMANTIC_KEY],
tf.where(
tf.equal(inputs[common.GT_SEMANTIC_RAW], self._ignore_label),
0.0,
1.0))
if common.TASK_PANOPTIC_SEGMENTATION in self._supported_tasks:
step_outputs[self._eval_pq_metric.name] = (
inputs[common.GT_PANOPTIC_RAW], outputs[common.PRED_PANOPTIC_KEY])
if common.TASK_INSTANCE_SEGMENTATION in self._supported_tasks:
step_outputs[self._eval_ap_metric.name] = (
inputs[common.GT_PANOPTIC_RAW], outputs[common.PRED_PANOPTIC_KEY],
outputs[common.PRED_SEMANTIC_PROBS_KEY],
outputs[common.PRED_INSTANCE_SCORES_KEY],
inputs[common.GT_IS_CROWD_RAW])
if (common.TASK_DEPTH_AWARE_VIDEO_PANOPTIC_SEGMENTATION
in self._supported_tasks):
step_outputs[self._eval_vpq_metric.name] = (
inputs[common.GT_PANOPTIC_RAW],
inputs[common.GT_NEXT_PANOPTIC_RAW],
outputs[common.PRED_PANOPTIC_KEY],
outputs[common.PRED_NEXT_PANOPTIC_KEY])
else:
# We only undo-preprocess for those defined in tuples in model/utils.py.
outputs = utils.undo_preprocessing(outputs, resized_size,
raw_size)
# We only undo-preprocess for those defined in tuples in model/utils.py.
inputs = utils.undo_preprocessing(inputs, resized_size,
raw_size)
if common.SEQUENCE_ID in inputs:
step_outputs[common.SEQUENCE_ID] = inputs[common.SEQUENCE_ID]
if self._enable_visualization or self._save_raw_predictions:
step_outputs[_PREDICTIONS_KEY] = outputs
step_outputs[_LABELS_KEY] = inputs
return step_outputs
def eval_end(self, state=None):
"""Called at the end of the evaluation.
Args:
state: The outputs from `eval_reduce` after the last eval step.
Returns:
A dictionary of `Tensors`, which will be written to logs and as
TensorBoard summaries.
"""
if not self._decode_groundtruth_label:
return {}
eval_logs = {}
for loss_metric in self._eval_loss_metric_dict.values():
eval_logs['losses/' + loss_metric.name] = loss_metric.result()
eval_logs['evaluation/iou/' + self._eval_iou_metric.name] = (
self._eval_iou_metric.result())
if common.TASK_PANOPTIC_SEGMENTATION in self._supported_tasks:
pq_results = self._eval_pq_metric.result()
eval_logs['evaluation/pq/PQ'] = pq_results[0]
eval_logs['evaluation/pq/SQ'] = pq_results[1]
eval_logs['evaluation/pq/RQ'] = pq_results[2]
eval_logs['evaluation/pq/TP'] = pq_results[3]
eval_logs['evaluation/pq/FN'] = pq_results[4]
eval_logs['evaluation/pq/FP'] = pq_results[5]
if common.TASK_INSTANCE_SEGMENTATION in self._supported_tasks:
ap_results = self._eval_ap_metric.result()
eval_logs['evaluation/ap/AP_Mask'] = ap_results[0]
if self._config.evaluator_options.detailed_ap_metrics:
eval_logs['evaluation/ap/AP_Mask_@IoU=0.5'] = ap_results[1]
eval_logs['evaluation/ap/AP_Mask_@IoU=0.75'] = ap_results[2]
eval_logs['evaluation/ap/AP_Mask_small'] = ap_results[3]
eval_logs['evaluation/ap/AP_Mask_medium'] = ap_results[4]
eval_logs['evaluation/ap/AP_Mask_large'] = ap_results[5]
eval_logs['evaluation/ap/AR_Mask_maxdets=1'] = ap_results[6]
eval_logs['evaluation/ap/AR_Mask_maxdets=10'] = ap_results[7]
eval_logs['evaluation/ap/AR_Mask_maxdets=100'] = ap_results[8]
eval_logs['evaluation/ap/AR_Mask_small'] = ap_results[9]
eval_logs['evaluation/ap/AR_Mask_medium'] = ap_results[10]
eval_logs['evaluation/ap/AR_Mask_large'] = ap_results[11]
if common.TASK_VIDEO_PANOPTIC_SEGMENTATION in self._supported_tasks:
tracking_results = self._eval_tracking_metric.result()
eval_logs['evaluation/step/STQ'] = tracking_results['STQ']
eval_logs['evaluation/step/AQ'] = tracking_results['AQ']
eval_logs['evaluation/step/IoU'] = tracking_results['IoU']
if (common.TASK_DEPTH_AWARE_VIDEO_PANOPTIC_SEGMENTATION
in self._supported_tasks):
vpq_results = self._eval_vpq_metric.result()
eval_logs['evaluation/vpq_2frames/PQ'] = vpq_results[0]
eval_logs['evaluation/vpq_2frames/SQ'] = vpq_results[1]
eval_logs['evaluation/vpq_2frames/RQ'] = vpq_results[2]
eval_logs['evaluation/vpq_2frames/TP'] = vpq_results[3]
eval_logs['evaluation/vpq_2frames/FN'] = vpq_results[4]
eval_logs['evaluation/vpq_2frames/FP'] = vpq_results[5]
return eval_logs
def eval_reduce(self, state=None, step_outputs=None):
"""A function to do the reduction on the evaluation outputs per step.
Args:
state: A maintained state throughout the evaluation.
step_outputs: Outputs from the current evaluation step.
Returns:
An output which is passed as `state` argument into `eval_reduce` function
for the next step. After evaluation is finished, the output from last step
will be passed into `eval_end` function.
"""
if self._save_raw_predictions:
sequence = None
if self._dataset_info.is_video_dataset:
sequence = step_outputs[_LABELS_KEY][common.SEQUENCE_ID][0][0]
vis.store_raw_predictions(
step_outputs[_PREDICTIONS_KEY],
step_outputs[_LABELS_KEY][common.IMAGE_NAME][0][0],
self._dataset_info,
self._vis_dir,
sequence,
raw_panoptic_format=(
self._config.evaluator_options.raw_panoptic_format),
convert_to_eval=self._config.evaluator_options.convert_raw_to_eval_ids
)
if not self._decode_groundtruth_label:
# The followed operations will all require decoding groundtruth label, and
# thus we will simply return if decode_groundtruth_label is False.
return state
if (self._enable_visualization and
(self._sample_counter < self._num_vis_samples)):
predictions = step_outputs[_PREDICTIONS_KEY]
inputs = step_outputs[_LABELS_KEY]
if self._dataset_info.is_video_dataset:
inputs[common.IMAGE] = tf.expand_dims(inputs[common.IMAGE][0][..., :3],
axis=0)
vis.store_predictions(
predictions,
inputs,
self._sample_counter,
self._dataset_info,
self._vis_dir)
self._sample_counter += 1
# Accumulates PQ, AP_Mask and STQ.
if common.TASK_PANOPTIC_SEGMENTATION in self._supported_tasks:
for gt_panoptic, pred_panoptic in zip(
step_outputs[self._eval_pq_metric.name][0],
step_outputs[self._eval_pq_metric.name][1]):
batch_size = tf.shape(gt_panoptic)[0]
for i in range(batch_size):
self._eval_pq_metric.update_state(gt_panoptic[i], pred_panoptic[i])
# STQ.
if common.TASK_VIDEO_PANOPTIC_SEGMENTATION in self._supported_tasks:
self._eval_tracking_metric.update_state(
gt_panoptic[i], pred_panoptic[i],
step_outputs[common.SEQUENCE_ID][0][0].numpy())
if common.TASK_INSTANCE_SEGMENTATION in self._supported_tasks:
# AP_Mask.
for ap_result in zip(*tuple(step_outputs[self._eval_ap_metric.name])):
(gt_panoptic, pred_panoptic, pred_semantic_probs, pred_instance_scores,
gt_is_crowd) = ap_result
batch_size = tf.shape(gt_panoptic)[0]
for i in range(batch_size):
self._eval_ap_metric.update_state(gt_panoptic[i], pred_panoptic[i],
pred_semantic_probs[i],
pred_instance_scores[i],
gt_is_crowd[i])
if (common.TASK_DEPTH_AWARE_VIDEO_PANOPTIC_SEGMENTATION
in self._supported_tasks):
for vpq_result in zip(*tuple(step_outputs[self._eval_vpq_metric.name])):
(gt_panoptic, gt_next_panoptic, pred_panoptic,
pred_next_panoptic) = vpq_result
batch_size = tf.shape(gt_panoptic)[0]
for i in range(batch_size):
self._eval_vpq_metric.update_state(
[gt_panoptic[i], gt_next_panoptic[i]],
[pred_panoptic[i], pred_next_panoptic[i]])
# We simply return state as it is, since our current implementation does not
# keep track of state between steps.
return state
|