Spaces:
Runtime error
Runtime error
File size: 22,812 Bytes
d1843be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 |
# coding=utf-8
# Copyright 2021 The Deeplab2 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Implements dual path transformer layers proposed in MaX-DeepLab [1].
Dual-path transformer introduces a global memory path in addition to a CNN path,
allowing bi-directional communication with any CNN layers.
[1] MaX-DeepLab: End-to-End Panoptic Segmentation with Mask Transformers,
CVPR 2021.
Huiyu Wang, Yukun Zhu, Hartwig Adam, Alan Yuille, Liang-Chieh Chen.
"""
import tensorflow as tf
from deeplab2.model import utils
from deeplab2.model.layers import activations
from deeplab2.model.layers import convolutions
class AttentionOperation(tf.keras.layers.Layer):
"""Computes standard 1D multi-head attention with query, key, and value."""
def __init__(self,
name,
activation,
transformer_activation,
bn_layer=tf.keras.layers.BatchNormalization):
"""Initializes an AttentionOperation layer.
Args:
name: A string, the name of this layer.
activation: A string, type of activation function to apply.
transformer_activation: A string, type of activation function for
self-attention. Support 'sigmoid' and 'softmax'.
bn_layer: An optional tf.keras.layers.Layer that computes the
normalization (default: tf.keras.layers.BatchNormalization).
"""
super(AttentionOperation, self).__init__(name=name)
# batch_norm_similarity has shape [batch, num_heads, num_query, num_key],
# where num_query and num_key usually equals to height or width or length,
# i.e., spatial dimensions, so batch norm is applied to axis=1 only.
self._batch_norm_similarity = bn_layer(axis=1, name='batch_norm_similarity')
# batch_norm_retrieved_value is done on shape [batch, num_heads, length,
# value_channels], which will be reshaped to the output shape [batch,
# length, value_channels * num_heads], so we apply batch norm on the
# effective channel dimension -- value_channels * num_heads.
self._batch_norm_retrieved_value = bn_layer(
axis=[1, 3], name='batch_norm_retrieved_value')
self._activation_fn = activations.get_activation(activation)
self._transformer_activation_fn = activations.get_activation(
transformer_activation)
def call(self, inputs, training=False):
"""Performs an AttentionOperation.
Args:
inputs: A tuple of (query, key, value), where query is [batch, num_head,
query_length, channels] tensor, key is a [batch, num_head, key_length,
channels] tensor, and value is a [batch, key_length, num_head,
value_channels] tensor.
training: A boolean, whether the model is in training mode.
Returns:
output: A [batch, query_length, num_head * value_channels] tensor, the
retrieved value.
"""
# Decode query, key, and value from inputs.
query, key, value = inputs
# Compute attention similarity.
similarity_logits = tf.einsum('bhld,bhmd->bhlm', query, key)
similarity_logits = self._batch_norm_similarity(
similarity_logits, training=training)
# Apply a transformer attention activation function, e.g. softmax.
attention_weights = self._transformer_activation_fn(similarity_logits)
# Retrieve the value content.
retrieved_value = tf.einsum(
'bhlm,bmhd->bhld', attention_weights, value)
retrieved_value = self._batch_norm_retrieved_value(
retrieved_value, training=training)
retrieved_value = self._activation_fn(retrieved_value)
# Reshape the output.
return utils.transpose_and_reshape_for_attention_operation(
retrieved_value)
class DualPathTransformerLayer(tf.keras.layers.Layer):
"""Applies a dual path transformer layer, as proposed in MaX-DeepLab [1].
Dual-path transformer layer takes a pixel space input and a memory space
input, and performs memory2pixel attention, pixel2memory attention, and
memory2memory self-attention. Note that the pixel2pixel self-attention or
convolution in the pixel space is implemented in axial_layers.py and
axial_blocks.py. Thus, the pixel2pixel operation is not included in this
DualPathTransformerLayer implementation. Please use this class together with
a residual block with axial-attention, global-attention, or convolution in
order to construct the full dual path transformer in the paper.
[1] MaX-DeepLab: End-to-End Panoptic Segmentation with Mask Transformers,
CVPR 2021.
Huiyu Wang, Yukun Zhu, Hartwig Adam, Alan Yuille, Liang-Chieh Chen.
"""
def __init__(self,
name='dual_path_transformer_layer',
activation='relu',
filters=128,
num_heads=8,
bottleneck_expansion=2,
key_expansion=1,
value_expansion=2,
feed_forward_network_channels=2048,
use_memory_self_attention=True,
use_pixel2memory_feedback_attention=True,
transformer_activation='softmax',
bn_layer=tf.keras.layers.BatchNormalization,
conv_kernel_weight_decay=0.0):
"""Initializes a DualPathTransformerLayer.
This function implements a dual path transformer layer between a pixel space
and a memory space, as described in the MaX-DeepLab paper. In this dual path
transformer, the memory2pixel cross attention and the memory self-attention
share a single activation, e.g. softmax.
Reference:
MaX-DeepLab: "End-to-End Panoptic Segmentation with Mask Transformers",
CVPR 2021. https://arxiv.org/abs/2012.00759
Huiyu Wang, Yukun Zhu, Hartwig Adam, Alan Yuille, Liang-Chieh Chen.
Args:
name: A string, the name of this dual path transformer layer.
activation: A string, type of activation function to apply.
filters: An integer, the base number of channels for the layer.
num_heads: An integer, the number of heads in multi-head attention.
bottleneck_expansion: A float, the channel expansion ratio for the
bottleneck.
key_expansion: A float, the channel expansion ratio for keys.
value_expansion: A float, the channel expansion ratio for values.
feed_forward_network_channels: An integer, the number of channels for the
feed_forward_network. Zero means no feed_forward_network will be
applied.
use_memory_self_attention: A boolean, whether to apply the memory space
self-attention.
use_pixel2memory_feedback_attention: A boolean, whether to apply the
pixel2memory feedback attention.
transformer_activation: A string, type of activation function for
self-attention. Support 'sigmoid' and 'softmax'.
bn_layer: A tf.keras.layers.Layer that computes the normalization
(default: tf.keras.layers.BatchNormalization).
conv_kernel_weight_decay: A float, the weight decay for convolution
kernels.
Raises:
ValueError: If filters * key_expansion is not divisible by num_heads.
ValueError: If filters * value_expansion is not divisible by num_heads.
"""
super(DualPathTransformerLayer, self).__init__(name=name)
bottleneck_channels = int(round(filters * bottleneck_expansion))
total_key_depth = int(round(filters * key_expansion))
total_value_depth = int(round(filters * value_expansion))
if total_key_depth % num_heads:
raise ValueError('Total_key_depth should be divisible by num_heads.')
if total_value_depth % num_heads:
raise ValueError('Total_value_depth should be divisible by num_heads.')
# Compute query key value with one convolution and a batch norm layer. The
# initialization std is standard transformer initialization (without batch
# norm), as used in SASA and ViT. In our case, we use batch norm by default,
# so it does not require careful tuning. If one wants to remove all batch
# norms in axial attention, this standard initialization should still be
# good, but a more careful initialization is encouraged.
initialization_std = bottleneck_channels ** -0.5
self._memory_conv1_bn_act = convolutions.Conv1D(
bottleneck_channels, 'memory_conv1_bn_act',
use_bias=False,
use_bn=True,
bn_layer=bn_layer,
activation=activation,
conv_kernel_weight_decay=conv_kernel_weight_decay)
self._pixel_conv1_bn_act = convolutions.Conv1D(
bottleneck_channels, 'pixel_conv1_bn_act',
use_bias=False,
use_bn=True,
bn_layer=bn_layer,
activation=activation,
conv_kernel_weight_decay=conv_kernel_weight_decay)
# We always compute the query for memory space, since it gathers information
# from the pixel space and thus cannot be removed. We compute the key and
# value for memory space only when they are necessary (i.e. either
# use_memory_self_attention or use_pixel2memory_feedback_attention).
if use_memory_self_attention or use_pixel2memory_feedback_attention:
self._memory_qkv_conv_bn = convolutions.Conv1D(
total_key_depth * 2 + total_value_depth, 'memory_qkv_conv_bn',
use_bias=False,
use_bn=True,
bn_layer=bn_layer,
activation='none',
conv_kernel_weight_decay=conv_kernel_weight_decay,
kernel_initializer=tf.keras.initializers.TruncatedNormal(
stddev=initialization_std))
else:
# Compute memory query only if memory key and value are not used.
self._memory_query_conv_bn = convolutions.Conv1D(
total_key_depth, 'memory_query_conv_bn',
use_bias=False,
use_bn=True,
bn_layer=bn_layer,
activation='none',
conv_kernel_weight_decay=conv_kernel_weight_decay,
kernel_initializer=tf.keras.initializers.TruncatedNormal(
stddev=initialization_std))
# For the pixel space, we always compute the key and value, since they
# provide information for the memory space and thus cannot be removed. We
# compute the query for pixel space only when it is necessary (i.e.
# use_pixel2memory_feedback_attention is True).
if use_pixel2memory_feedback_attention:
self._pixel_qkv_conv_bn = convolutions.Conv1D(
total_key_depth * 2 + total_value_depth, 'pixel_qkv_conv_bn',
use_bias=False,
use_bn=True,
bn_layer=bn_layer,
activation='none',
conv_kernel_weight_decay=conv_kernel_weight_decay,
kernel_initializer=tf.keras.initializers.TruncatedNormal(
stddev=initialization_std))
else:
self._pixel_kv_conv_bn = convolutions.Conv1D(
total_key_depth + total_value_depth, 'pixel_kv_conv_bn',
use_bias=False,
use_bn=True,
bn_layer=bn_layer,
activation='none',
conv_kernel_weight_decay=conv_kernel_weight_decay,
kernel_initializer=tf.keras.initializers.TruncatedNormal(
stddev=initialization_std))
self._memory_attention = AttentionOperation(
'memory_attention', activation, transformer_activation,
bn_layer=bn_layer)
if use_pixel2memory_feedback_attention:
self._pixel_attention = AttentionOperation(
'pixel_attention', activation, transformer_activation,
bn_layer=bn_layer)
self._use_memory_self_attention = use_memory_self_attention
self._use_pixel2memory_feedback_attention = (
use_pixel2memory_feedback_attention)
self._total_key_depth = total_key_depth
self._total_value_depth = total_value_depth
self._num_heads = num_heads
self._bn_layer = bn_layer
self._conv_kernel_weight_decay = conv_kernel_weight_decay
self._activation = activation
self._activation_fn = activations.get_activation(activation)
self._feed_forward_network_channels = feed_forward_network_channels
def build(self, input_shape_list):
pixel_shape, memory_shape = input_shape_list[:2]
# Here we follow ResNet bottleneck blocks: we apply a batch norm with gamma
# initialized at zero, followed by drop path and an activation function.
# Initializing this gamma at zero ensures that at random initialization of
# the model, the skip connections dominate all residual blocks. In this way,
# all the skip connections construct an identity mapping that passes the
# gradients (without any distortion from the randomly initialized blocks) to
# all residual blocks. This helps training at early epochs.
# Reference: "Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour".
# https://arxiv.org/abs/1706.02677
self._memory_conv3_bn = convolutions.Conv1D(
memory_shape[-1], 'memory_conv3_bn',
use_bias=False,
use_bn=True,
bn_layer=self._bn_layer,
bn_gamma_initializer='zeros',
activation='none',
conv_kernel_weight_decay=self._conv_kernel_weight_decay)
if self._feed_forward_network_channels > 0:
self._memory_ffn_conv1_bn_act = convolutions.Conv1D(
self._feed_forward_network_channels, 'memory_ffn_conv1_bn_act',
use_bias=False,
use_bn=True,
bn_layer=self._bn_layer,
activation=self._activation,
conv_kernel_weight_decay=self._conv_kernel_weight_decay)
# Again, we follow ResNet bottleneck blocks: we apply a batch norm with
# gamma initialized at zero, followed by drop path and an activation
# function.
self._memory_ffn_conv2_bn = convolutions.Conv1D(
memory_shape[-1], 'memory_ffn_conv2_bn',
use_bias=False,
use_bn=True,
bn_layer=self._bn_layer,
bn_gamma_initializer='zeros',
activation='none',
conv_kernel_weight_decay=self._conv_kernel_weight_decay)
if self._use_pixel2memory_feedback_attention:
self._pixel_conv3_bn = convolutions.Conv1D(
pixel_shape[-1], 'pixel_conv3_bn',
use_bias=False,
use_bn=True,
bn_layer=self._bn_layer,
bn_gamma_initializer='zeros',
activation='none',
conv_kernel_weight_decay=self._conv_kernel_weight_decay)
def call(self, inputs):
"""Performs a forward pass.
We have to define drop_path_masks outside the layer call and pass it into
the layer call, because recompute_grad (gradient checkpointing) does not
allow any randomness within the function call. In addition, recompute_grad
only supports float tensors as inputs. For this reason, the training flag
should be also passed as a float tensor. For the same reason, we cannot
support passing drop_path_random_mask as None. Instead, we ask the users to
pass only the first two tensors when drop path is not used.
Args:
inputs: A tuple of 3 or 6 tensors, containing
pixel_space_input should be a [batch, num_pixel, pixel_space_channels]
tensor.
memory_space_input should be a [batch, num_memory,
memory_space_channels] tensor.
float_tensor_training should be a float tensor of 0.0 or 1.0, whether
the model is in training mode.
(optional) pixel_space_drop_path_mask is a drop path mask tensor of
shape [batch, 1, 1] for the pixel space.
(optional) memory_space_attention_drop_path_mask is a drop path mask
tensor of shape [batch, 1, 1] for the memory space.
(optional) memory_space_feed_forward_network_drop_path_mask is a drop
path mask tensor of shape [batch, 1, 1] for the memory space feed
forward network.
Returns:
pixel_space_output: A [batch, num_pixel, pixel_space_channels] tensor.
activated_pixel_space_output: A [batch, num_pixel, pixel_space_channels]
tensor, activated pixel_space_output.
memory_space_output: A [batch, num_memory, memory_space_channels]
tensor.
Raises:
ValueError: If the length of inputs is not 3 or 6.
"""
if len(inputs) not in (3, 6):
raise ValueError('The length of inputs should be either 3 or 6.')
# Unpack the inputs.
(pixel_space_input, memory_space_input, float_tensor_training,
pixel_space_drop_path_mask, memory_space_attention_drop_path_mask,
memory_space_feed_forward_network_drop_path_mask) = (
utils.pad_sequence_with_none(inputs, target_length=6))
# Recompute_grad takes only float tensors as inputs. It does not allow
# bools or boolean tensors. For this reason, we cast training to a float
# tensor outside this call, and now we cast it back to a boolean tensor.
training = tf.cast(float_tensor_training, tf.bool)
# Decode the inputs shapes.
pixel_shape = pixel_space_input.get_shape().as_list()
memory_shape = memory_space_input.get_shape().as_list()
# Similar to the ResNet bottleneck design, we do an input down projection
# in both the pixel space and the memory space.
memory_space = self._memory_conv1_bn_act(memory_space_input,
training=training)
# Pixel space input is not activated.
pixel_space = self._pixel_conv1_bn_act(
self._activation_fn(pixel_space_input), training=training)
if (self._use_memory_self_attention or
self._use_pixel2memory_feedback_attention):
memory_space_qkv = self._memory_qkv_conv_bn(memory_space,
training=training)
# Split, reshape, and transpose the query, key, and value.
memory_query, memory_key, memory_value = (
tf.split(memory_space_qkv, [
self._total_key_depth, self._total_key_depth,
self._total_value_depth], axis=-1))
memory_key = utils.reshape_and_transpose_for_attention_operation(
memory_key, self._num_heads)
memory_value = tf.reshape(memory_value, [
-1, memory_shape[1], self._num_heads,
self._total_value_depth // self._num_heads])
else:
# Compute memory query only if memory key and value are not used.
memory_query = self._memory_query_conv_bn(memory_space,
training=training)
# Reshape and transpose the query.
memory_query = utils.reshape_and_transpose_for_attention_operation(
memory_query, self._num_heads)
if self._use_pixel2memory_feedback_attention:
pixel_space_qkv = self._pixel_qkv_conv_bn(pixel_space,
training=training)
# Split the query, key, and value.
pixel_query, pixel_key, pixel_value = tf.split(
pixel_space_qkv, [
self._total_key_depth, self._total_key_depth,
self._total_value_depth], axis=-1)
pixel_query = utils.reshape_and_transpose_for_attention_operation(
pixel_query, self._num_heads)
else:
pixel_space_kv = self._pixel_kv_conv_bn(pixel_space, training=training)
# Split the key and the value.
pixel_key, pixel_value = tf.split(pixel_space_kv, [
self._total_key_depth, self._total_value_depth], axis=-1)
# Reshape and transpose the key and the value.
pixel_key = utils.reshape_and_transpose_for_attention_operation(
pixel_key, self._num_heads)
pixel_value = tf.reshape(pixel_value, [
-1, pixel_shape[1], self._num_heads,
self._total_value_depth // self._num_heads])
# Compute memory space attention.
if not self._use_memory_self_attention:
# If memory self attention is not used, then only memory2pixel cross
# attention is used for the memory space. In this case, the key and the
# value are simply pixel_key and pixel_value.
memory_attention_key = pixel_key
memory_attention_value = pixel_value
else:
# If we also use memory self attention, the key and the value are the
# concatenation of keys and values in both the pixel space and the
# memory space.
memory_attention_key = tf.concat([pixel_key, memory_key], axis=2)
memory_attention_value = tf.concat([pixel_value, memory_value], axis=1)
memory_space = self._memory_attention(
(memory_query, memory_attention_key, memory_attention_value),
training=training)
memory_space = self._memory_conv3_bn(memory_space, training=training)
if memory_space_attention_drop_path_mask is not None:
memory_space = memory_space * memory_space_attention_drop_path_mask
memory_space_output = self._activation_fn(
memory_space_input + memory_space)
# Apply an optional feed-forward network to the memory space.
if self._feed_forward_network_channels > 0:
memory_space = self._memory_ffn_conv1_bn_act(memory_space_output,
training=training)
memory_space = self._memory_ffn_conv2_bn(memory_space,
training=training)
if memory_space_feed_forward_network_drop_path_mask is not None:
memory_space = (memory_space *
memory_space_feed_forward_network_drop_path_mask)
memory_space_output = self._activation_fn(
memory_space_output + memory_space)
# Compute pixel space attention and the output projection only when
# pixel2memory_feedback_attention is used.
if self._use_pixel2memory_feedback_attention:
pixel_space = self._pixel_attention(
(pixel_query, memory_key, memory_value), training=training)
pixel_space = self._pixel_conv3_bn(pixel_space, training=training)
if pixel_space_drop_path_mask is not None:
pixel_space = pixel_space * pixel_space_drop_path_mask
pixel_space_output = pixel_space_input + pixel_space
else:
# If pixel2memory_feedback_attention is not used, the pixel_space_input
# is not changed.
pixel_space_output = pixel_space_input
activated_pixel_space_output = self._activation_fn(pixel_space_output)
# Return the pixel space output and memory space output. Note that we
# return pixel sapce output with and without the activation function,
# because our decoder might use non-activated features.
return (pixel_space_output,
activated_pixel_space_output,
memory_space_output)
|