Spaces:
Runtime error
Runtime error
File size: 15,616 Bytes
d1843be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 |
# coding=utf-8
# Copyright 2021 The Deeplab2 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""MobileNetV3 models for Deep Labeling.
Reference:
Howard, A., Sandler, M., et al. Searching for mobilenetv3. In ICCV, 2019
"""
from typing import Any, Callable, Mapping, Optional, Sequence
import tensorflow as tf
from deeplab2.model import utils
from deeplab2.model.layers import blocks
from deeplab2.model.layers import convolutions
# The default input image channels.
_INPUT_CHANNELS = 3
MNV3Small_BLOCK_SPECS = {
'spec_name': 'MobileNetV3Small',
'block_spec_schema': ['block_fn', 'kernel_size', 'strides', 'filters',
'activation', 'se_ratio', 'expand_ratio',
'is_endpoint'],
'block_specs': [
('conv_bn', 3, 2, 16,
'hard_swish', None, None, True),
('inverted_bottleneck', 3, 2, 16,
'relu', 0.25, 1, True),
('inverted_bottleneck', 3, 2, 24,
'relu', None, 72. / 16, False),
('inverted_bottleneck', 3, 1, 24,
'relu', None, 88. / 24, True),
('inverted_bottleneck', 5, 2, 40,
'hard_swish', 0.25, 4., False),
('inverted_bottleneck', 5, 1, 40,
'hard_swish', 0.25, 6., False),
('inverted_bottleneck', 5, 1, 40,
'hard_swish', 0.25, 6., False),
('inverted_bottleneck', 5, 1, 48,
'hard_swish', 0.25, 3., False),
('inverted_bottleneck', 5, 1, 48,
'hard_swish', 0.25, 3., True),
('inverted_bottleneck', 5, 2, 96,
'hard_swish', 0.25, 6., False),
('inverted_bottleneck', 5, 1, 96,
'hard_swish', 0.25, 6., False),
('inverted_bottleneck', 5, 1, 96,
'hard_swish', 0.25, 6., False),
('conv_bn', 1, 1, 576,
'hard_swish', None, None, True),
]
}
MNV3Large_BLOCK_SPECS = {
'spec_name': 'MobileNetV3Large',
'block_spec_schema': ['block_fn', 'kernel_size', 'strides', 'filters',
'activation', 'se_ratio', 'expand_ratio',
'is_endpoint'],
'block_specs': [
('conv_bn', 3, 2, 16,
'hard_swish', None, None, False),
('inverted_bottleneck', 3, 1, 16,
'relu', None, 1., True),
('inverted_bottleneck', 3, 2, 24,
'relu', None, 4., False),
('inverted_bottleneck', 3, 1, 24,
'relu', None, 3., True),
('inverted_bottleneck', 5, 2, 40,
'relu', 0.25, 3., False),
('inverted_bottleneck', 5, 1, 40,
'relu', 0.25, 3., False),
('inverted_bottleneck', 5, 1, 40,
'relu', 0.25, 3., True),
('inverted_bottleneck', 3, 2, 80,
'hard_swish', None, 6., False),
('inverted_bottleneck', 3, 1, 80,
'hard_swish', None, 2.5, False),
('inverted_bottleneck', 3, 1, 80,
'hard_swish', None, 2.3, False),
('inverted_bottleneck', 3, 1, 80,
'hard_swish', None, 2.3, False),
('inverted_bottleneck', 3, 1, 112,
'hard_swish', 0.25, 6., False),
('inverted_bottleneck', 3, 1, 112,
'hard_swish', 0.25, 6., True),
('inverted_bottleneck', 5, 2, 160,
'hard_swish', 0.25, 6., False),
('inverted_bottleneck', 5, 1, 160,
'hard_swish', 0.25, 6., False),
('inverted_bottleneck', 5, 1, 160,
'hard_swish', 0.25, 6., False),
('conv_bn', 1, 1, 960,
'hard_swish', None, None, True),
]
}
SUPPORTED_SPECS_MAP = {
'MobileNetV3Large': MNV3Large_BLOCK_SPECS,
'MobileNetV3Small': MNV3Small_BLOCK_SPECS,
}
# pylint: disable=invalid-name
def _block_spec_decoder(specs: Mapping[Any, Any],
width_multiplier: float,
divisible_by: int = 8) -> Sequence[Mapping[str, Any]]:
"""Decodes specs for a block.
Args:
specs: A `dict` specification of block specs of a mobilenet version.
width_multiplier: A `float` multiplier for the filter size for all
convolution ops. The value must be greater than zero. Typical usage will
be to set this value in (0, 1) to reduce the number of parameters or
computation cost of the model.
divisible_by: An `int` that ensures all inner dimensions are divisible by
this number.
Returns:
A list of block spec in dictionary that defines structure of the layers.
"""
spec_name = specs['spec_name']
block_spec_schema = specs['block_spec_schema']
block_specs = specs['block_specs']
if not block_specs:
raise ValueError(
'The block spec cannot be empty for {} !'.format(spec_name))
if len(block_specs[0]) != len(block_spec_schema):
raise ValueError('The block spec values {} do not match with '
'the schema {}'.format(block_specs[0], block_spec_schema))
decoded_specs = []
for spec in block_specs:
spec_dict = dict(zip(block_spec_schema, spec))
decoded_specs.append(spec_dict)
for ds in decoded_specs:
ds['filters'] = utils.make_divisible(
value=ds['filters'] * width_multiplier,
divisor=divisible_by,
min_value=8)
return decoded_specs
# pylint: enable=invalid-name
class MobileNet(tf.keras.Model):
"""Creates a MobileNetV3 family model."""
def __init__(
self,
model_id: str = 'MobileNetV3Small',
width_multiplier: float = 1.0,
output_stride: Optional[int] = None,
min_width: int = 8,
divisible_by: int = 8,
regularize_depthwise: bool = False,
bn_layer: Callable[..., Any] = tf.keras.layers.BatchNormalization,
conv_kernel_weight_decay: float = 0.0,
name: str = 'MobilenNetV3'):
"""Initializes a MobileNet V3 model.
Args:
model_id: A `str` of MobileNet version. The supported values are
`MobileNetV3Large`, `MobileNetV3Small`.
width_multiplier: A `float` of multiplier for the filters (number of
channels) for all convolution ops. The value must be greater than zero.
Typical usage will be to set this value in (0, 1) to reduce the number
of parameters or computation cost of the model.
output_stride: An `int` that specifies the requested ratio of input to
output spatial resolution. If not None, then we invoke atrous
convolution if necessary to prevent the network from reducing the
spatial resolution of activation maps. The output_stride should be
divisible by 4.
min_width: An `int` of minimum width (number of channels) for all
convolution ops. Enforced when width_multiplier < 1, and not an active
constraint when width_multiplier >= 1.
divisible_by: An `int` that ensures all intermediate feature dimensions
are divisible by this number.
regularize_depthwise: If True, apply regularization on depthwise conv.
bn_layer: An optional tf.keras.layers.Layer that computes the
normalization (default: tf.keras.layers.BatchNormalization).
conv_kernel_weight_decay: A float, the weight decay for convolution
kernels.
name: Model name.
Raises:
ValueError: The MobileNet version is not supported.
ValueError: width_multiplier is not greater than zero.
ValueError: Output stride must be None or a multiple of 4.
ValueError: Unknown block type i for layer j.
"""
if model_id not in SUPPORTED_SPECS_MAP:
raise ValueError('The MobileNet version {} '
'is not supported'.format(model_id))
if width_multiplier <= 0:
raise ValueError('width_multiplier is not greater than zero.')
if (output_stride is not None and
(output_stride <= 1 or (output_stride > 1 and output_stride % 4))):
raise ValueError('Output stride must be None or a multiple of 4.')
super().__init__(name=name)
self._model_id = model_id
self._width_multiplier = width_multiplier
self._min_width = min_width
self._output_stride = output_stride
self._divisible_by = divisible_by
self._regularize_depthwise = regularize_depthwise
self._bn_layer = bn_layer
self._conv_kernel_weight_decay = conv_kernel_weight_decay
self._blocks = []
self._endpoint_names = []
block_specs = SUPPORTED_SPECS_MAP.get(model_id)
self._decoded_specs = _block_spec_decoder(
specs=block_specs,
width_multiplier=self._width_multiplier,
divisible_by=self._divisible_by)
self._mobilenet_base()
def _mobilenet_base(self):
"""Builds the base MobileNet architecture."""
# The current_stride variable keeps track of the output stride of the
# activations, i.e., the running product of convolution strides up to the
# current network layer. This allows us to invoke atrous convolution
# whenever applying the next convolution would result in the activations
# having output stride larger than the target output_stride.
current_stride = 1
# The atrous convolution rate parameter.
rate = 1
endpoint_level = 1
in_filters = _INPUT_CHANNELS
for i, block_def in enumerate(self._decoded_specs):
# We only need to build up to 'res5' endpoint for segmentation task.
if endpoint_level > 5 and not self._classification_mode:
break
block_name = '{}_{}'.format(block_def['block_fn'], i + 1)
if (self._output_stride is not None and
current_stride == self._output_stride):
# If we have reached the target output_stride, then we need to employ
# atrous convolution with stride=1 and multiply the atrous rate by the
# current unit's stride for use in subsequent layers.
layer_stride = 1
layer_rate = rate
rate = (
rate * block_def['strides']
if block_def['strides'] is not None else rate)
else:
layer_stride = block_def['strides']
layer_rate = 1
current_stride = (
current_stride * block_def['strides']
if block_def['strides'] is not None else current_stride)
if block_def['block_fn'] == 'conv_bn':
self._blocks.append(
convolutions.Conv2DSame(
output_channels=block_def['filters'],
kernel_size=block_def['kernel_size'],
strides=layer_stride,
atrous_rate=layer_rate,
activation=block_def['activation'],
use_bias=False,
bn_layer=self._bn_layer,
use_bn=True,
conv_kernel_weight_decay=self._conv_kernel_weight_decay,
name=block_name,
))
elif block_def['block_fn'] == 'inverted_bottleneck':
atrous_rate = 1
# There is no need to apply atrous convolution to any 1x1 convolution.
if layer_rate > 1 and block_def['kernel_size'] != 1:
atrous_rate = layer_rate
self._blocks.append(
blocks.InvertedBottleneckBlock(
in_filters=in_filters,
out_filters=block_def['filters'],
expand_ratio=block_def['expand_ratio'],
strides=layer_stride,
kernel_size=block_def['kernel_size'],
se_ratio=block_def['se_ratio'],
activation=block_def['activation'],
expand_se_in_filters=True,
depthwise_activation=None,
atrous_rate=atrous_rate,
divisible_by=self._divisible_by,
regularize_depthwise=self._regularize_depthwise,
use_depthwise=True,
# Note that whether the residual connection would be used is
# also conditional on the in_filters and out_filters size, even
# if use_residual=True,e.g. when input_filters != out_filters,
# no residual connection will be created.
use_residual=(block_def['strides'] == 1),
bn_layer=self._bn_layer,
conv_kernel_weight_decay=self._conv_kernel_weight_decay,
name=block_name,
))
else:
raise ValueError('Unknown block type {} for layer {}'.format(
block_def['block_fn'], i))
# Register input_filters for the next level
in_filters = block_def['filters']
if block_def['is_endpoint']:
# Name the endpoint to be 'res{1...5}' to align with ResNet. This
# simplifies segmentation head implementation.
self._endpoint_names.append('res' + str(endpoint_level))
endpoint_level += 1
else:
self._endpoint_names.append(None)
def call(self, input_tensor: tf.Tensor, training: bool = False):
"""Performs a forward pass through MobileNet."""
net = input_tensor
endpoints = {}
for block, endpoint_name in zip(self._blocks, self._endpoint_names):
net = block(net, training=training)
if endpoint_name is not None:
endpoints[endpoint_name] = net
return endpoints
def MobileNetV3Small(
width_multiplier: float = 1.0,
output_stride: int = 32,
bn_layer: Callable[..., Any] = tf.keras.layers.BatchNormalization,
conv_kernel_weight_decay: float = 0.0,
name: str = 'MobileNetV3Small') -> tf.keras.Model:
"""Creates a MobileNetV3Small model.
Args:
width_multiplier: A float, depth_multiplier for the whole model.
output_stride: An optional integer specifying the output stride of the
network.
bn_layer: An optional tf.keras.layers.Layer that computes the
normalization (default: tf.keras.layers.BatchNormalization).
conv_kernel_weight_decay: A float, the weight decay for convolution kernels.
name: Model name.
Returns:
The MobileNetV3Small model as an instance of tf.keras.Model.
"""
model = MobileNet(model_id='MobileNetV3Small',
width_multiplier=width_multiplier,
output_stride=output_stride,
bn_layer=bn_layer,
conv_kernel_weight_decay=conv_kernel_weight_decay,
name=name)
return model
def MobileNetV3Large(
width_multiplier: float = 1.0,
output_stride: int = 32,
bn_layer: Callable[..., Any] = tf.keras.layers.BatchNormalization,
conv_kernel_weight_decay: float = 0.0,
name: str = 'MobileNetV3Large') -> tf.keras.Model:
"""Creates a MobileNetV3Large model.
Args:
width_multiplier: A float, depth_multiplier for the STEM.
output_stride: An optional integer specifying the output stride of the
network.
bn_layer: An optional tf.keras.layers.Layer that computes the
normalization (default: tf.keras.layers.BatchNormalization).
conv_kernel_weight_decay: A float, the weight decay for convolution kernels.
name: Model name.
Returns:
The MobileNetV3Large model as an instance of tf.keras.Model.
"""
model = MobileNet(model_id='MobileNetV3Large',
width_multiplier=width_multiplier,
output_stride=output_stride,
bn_layer=bn_layer,
conv_kernel_weight_decay=conv_kernel_weight_decay,
name=name)
return model
|