Spaces:
Runtime error
Runtime error
File size: 6,784 Bytes
d1843be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
# coding=utf-8
# Copyright 2021 The Deeplab2 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for panoptic_quality metrics."""
import collections
from absl import logging
import numpy as np
import tensorflow as tf
from deeplab2.evaluation import panoptic_quality
from deeplab2.evaluation import test_utils
# See the definition of the color names at:
# https://en.wikipedia.org/wiki/Web_colors.
_CLASS_COLOR_MAP = {
(0, 0, 0): 0,
(0, 0, 255): 1, # Person (blue).
(255, 0, 0): 2, # Bear (red).
(0, 255, 0): 3, # Tree (lime).
(255, 0, 255): 4, # Bird (fuchsia).
(0, 255, 255): 5, # Sky (aqua).
(255, 255, 0): 6, # Cat (yellow).
}
def combine_maps(semantic_map, instance_map, label_divisor):
combined_map = instance_map + semantic_map * label_divisor
return tf.cast(combined_map, tf.int32)
class PanopticQualityMetricTest(tf.test.TestCase):
def test_streaming_metric_on_single_image(self):
max_instances_per_category = 1000
instance_class_map = {
0: 0,
47: 1,
97: 1,
133: 1,
150: 1,
174: 1,
198: 2,
215: 1,
244: 1,
255: 1,
}
gt_instances, gt_classes = test_utils.panoptic_segmentation_with_class_map(
'team_gt_instance.png', instance_class_map)
pred_classes = test_utils.read_segmentation_with_rgb_color_map(
'team_pred_class.png', _CLASS_COLOR_MAP)
pred_instances = test_utils.read_test_image(
'team_pred_instance.png', image_format='L')
pq_obj = panoptic_quality.PanopticQuality(
num_classes=3,
max_instances_per_category=max_instances_per_category,
ignored_label=0, offset=256*256)
y_true = combine_maps(gt_classes, gt_instances, max_instances_per_category)
y_pred = combine_maps(pred_classes, pred_instances,
max_instances_per_category)
pq_obj.update_state(y_true, y_pred)
result = pq_obj.result().numpy()
self.assertAlmostEqual(result[0], 0.62156284, places=4)
self.assertAlmostEqual(result[1], 0.64664984, places=4)
self.assertAlmostEqual(result[2], 0.9666667, places=4)
self.assertEqual(result[3], 4.)
self.assertAlmostEqual(result[4], 0.5)
self.assertEqual(result[5], 0.)
def test_streaming_metric_on_multiple_images(self):
num_classes = 7
bird_gt_instance_class_map = {
92: 5,
176: 3,
255: 4,
}
cat_gt_instance_class_map = {
0: 0,
255: 6,
}
team_gt_instance_class_map = {
0: 0,
47: 1,
97: 1,
133: 1,
150: 1,
174: 1,
198: 2,
215: 1,
244: 1,
255: 1,
}
max_instances_per_category = 256
test_image = collections.namedtuple(
'TestImage',
['gt_class_map', 'gt_path', 'pred_inst_path', 'pred_class_path'])
test_images = [
test_image(bird_gt_instance_class_map, 'bird_gt.png',
'bird_pred_instance.png', 'bird_pred_class.png'),
test_image(cat_gt_instance_class_map, 'cat_gt.png',
'cat_pred_instance.png', 'cat_pred_class.png'),
test_image(team_gt_instance_class_map, 'team_gt_instance.png',
'team_pred_instance.png', 'team_pred_class.png'),
]
gt_classes = []
gt_instances = []
pred_classes = []
pred_instances = []
for test_image in test_images:
(image_gt_instances,
image_gt_classes) = test_utils.panoptic_segmentation_with_class_map(
test_image.gt_path, test_image.gt_class_map)
gt_classes.append(image_gt_classes)
gt_instances.append(image_gt_instances)
pred_classes.append(
test_utils.read_segmentation_with_rgb_color_map(
test_image.pred_class_path, _CLASS_COLOR_MAP))
pred_instances.append(
test_utils.read_test_image(test_image.pred_inst_path,
image_format='L'))
pq_obj = panoptic_quality.PanopticQuality(
num_classes=num_classes,
max_instances_per_category=max_instances_per_category,
ignored_label=0, offset=256*256)
for pred_class, pred_instance, gt_class, gt_instance in zip(
pred_classes, pred_instances, gt_classes, gt_instances):
y_true = combine_maps(gt_class, gt_instance, max_instances_per_category)
y_pred = combine_maps(pred_class, pred_instance,
max_instances_per_category)
pq_obj.update_state(y_true, y_pred)
result = pq_obj.result().numpy()
self.assertAlmostEqual(result[0], 0.76855499, places=4)
self.assertAlmostEqual(result[1], 0.7769174, places=4)
self.assertAlmostEqual(result[2], 0.98888892, places=4)
self.assertEqual(result[3], 2.)
self.assertAlmostEqual(result[4], 1. / 6, places=4)
self.assertEqual(result[5], 0.)
def test_predicted_non_contiguous_ignore_label(self):
max_instances_per_category = 256
pq_obj = panoptic_quality.PanopticQuality(
num_classes=3,
max_instances_per_category=max_instances_per_category,
ignored_label=9,
offset=256 * 256)
gt_class = [
[0, 9, 9],
[1, 2, 2],
[1, 9, 9],
]
gt_instance = [
[0, 2, 2],
[1, 0, 0],
[1, 0, 0],
]
y_true = combine_maps(
np.array(gt_class), np.array(gt_instance), max_instances_per_category)
logging.info('y_true=\n%s', y_true)
pred_class = [
[0, 0, 9],
[1, 1, 1],
[1, 9, 9],
]
pred_instance = [
[0, 0, 0],
[0, 1, 1],
[0, 1, 1],
]
y_pred = combine_maps(
np.array(pred_class), np.array(pred_instance),
max_instances_per_category)
logging.info('y_pred=\n%s', y_pred)
pq_obj.update_state(y_true, y_pred)
result = pq_obj.result().numpy()
# pq
self.assertAlmostEqual(result[0], 2. / 9, places=4)
# sq
self.assertAlmostEqual(result[1], 1. / 3, places=4)
# rq
self.assertAlmostEqual(result[2], 2. / 9, places=4)
# tp
self.assertAlmostEqual(result[3], 1. / 3, places=4)
# fn
self.assertAlmostEqual(result[4], 2. / 3, places=4)
# fp
self.assertAlmostEqual(result[5], 2. / 3, places=4)
if __name__ == '__main__':
tf.test.main()
|