Spaces:
Runtime error
Runtime error
File size: 11,064 Bytes
d1843be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
# coding=utf-8
# Copyright 2021 The Deeplab2 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Implementation of the Panoptic Quality metric.
Panoptic Quality is an instance-based metric for evaluating the task of
image parsing, aka panoptic segmentation.
Please see the paper for details:
"Panoptic Segmentation", Alexander Kirillov, Kaiming He, Ross Girshick,
Carsten Rother and Piotr Dollar. arXiv:1801.00868, 2018.
"""
from typing import Any, List, Mapping, Optional, Tuple
import numpy as np
import tensorflow as tf
def _ids_to_counts(id_array: np.ndarray) -> Mapping[int, int]:
"""Given a numpy array, a mapping from each unique entry to its count."""
ids, counts = np.unique(id_array, return_counts=True)
return dict(zip(ids, counts))
class PanopticQuality(tf.keras.metrics.Metric):
"""Metric class for Panoptic Quality.
"Panoptic Segmentation" by Alexander Kirillov, Kaiming He, Ross Girshick,
Carsten Rother, Piotr Dollar.
https://arxiv.org/abs/1801.00868
Stand-alone usage:
pq_obj = panoptic_quality.PanopticQuality(num_classes,
max_instances_per_category, ignored_label)
pq_obj.update_state(y_true_1, y_pred_1)
pq_obj.update_state(y_true_2, y_pred_2)
...
result = pq_obj.result().numpy()
"""
def __init__(self,
num_classes: int,
ignored_label: int,
max_instances_per_category: int,
offset: int,
name: str = 'panoptic_quality',
**kwargs):
"""Initialization of the PanopticQuality metric.
Args:
num_classes: Number of classes in the dataset as an integer.
ignored_label: The class id to be ignored in evaluation as an integer or
integer tensor.
max_instances_per_category: The maximum number of instances for each class
as an integer or integer tensor.
offset: The maximum number of unique labels as an integer or integer
tensor.
name: An optional variable_scope name. (default: 'panoptic_quality')
**kwargs: The keyword arguments that are passed on to `fn`.
"""
super(PanopticQuality, self).__init__(name=name, **kwargs)
self.num_classes = num_classes
self.ignored_label = ignored_label
self.max_instances_per_category = max_instances_per_category
self.total_iou = self.add_weight(
'total_iou', shape=(num_classes,), initializer=tf.zeros_initializer)
self.total_tp = self.add_weight(
'total_tp', shape=(num_classes,), initializer=tf.zeros_initializer)
self.total_fn = self.add_weight(
'total_fn', shape=(num_classes,), initializer=tf.zeros_initializer)
self.total_fp = self.add_weight(
'total_fp', shape=(num_classes,), initializer=tf.zeros_initializer)
self.offset = offset
def compare_and_accumulate(
self, gt_panoptic_label: tf.Tensor, pred_panoptic_label: tf.Tensor
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
"""Compares predicted segmentation with groundtruth, accumulates its metric.
It is not assumed that instance ids are unique across different categories.
See for example combine_semantic_and_instance_predictions.py in official
PanopticAPI evaluation code for issues to consider when fusing category
and instance labels.
Instances ids of the ignored category have the meaning that id 0 is "void"
and remaining ones are crowd instances.
Args:
gt_panoptic_label: A tensor that combines label array from categories and
instances for ground truth.
pred_panoptic_label: A tensor that combines label array from categories
and instances for the prediction.
Returns:
The value of the metrics (iou, tp, fn, fp) over all comparisons, as a
float scalar.
"""
iou_per_class = np.zeros(self.num_classes, dtype=np.float64)
tp_per_class = np.zeros(self.num_classes, dtype=np.float64)
fn_per_class = np.zeros(self.num_classes, dtype=np.float64)
fp_per_class = np.zeros(self.num_classes, dtype=np.float64)
# Pre-calculate areas for all groundtruth and predicted segments.
gt_segment_areas = _ids_to_counts(gt_panoptic_label.numpy())
pred_segment_areas = _ids_to_counts(pred_panoptic_label.numpy())
# We assume the ignored segment has instance id = 0.
ignored_panoptic_id = self.ignored_label * self.max_instances_per_category
# Next, combine the groundtruth and predicted labels. Dividing up the pixels
# based on which groundtruth segment and which predicted segment they belong
# to, this will assign a different 64-bit integer label to each choice
# of (groundtruth segment, predicted segment), encoded as
# gt_panoptic_label * offset + pred_panoptic_label.
intersection_id_array = tf.cast(gt_panoptic_label,
tf.int64) * self.offset + tf.cast(
pred_panoptic_label, tf.int64)
# For every combination of (groundtruth segment, predicted segment) with a
# non-empty intersection, this counts the number of pixels in that
# intersection.
intersection_areas = _ids_to_counts(intersection_id_array.numpy())
# Compute overall ignored overlap.
def prediction_ignored_overlap(pred_panoptic_label):
intersection_id = ignored_panoptic_id * self.offset + pred_panoptic_label
return intersection_areas.get(intersection_id, 0)
# Sets that are populated with which segments groundtruth/predicted segments
# have been matched with overlapping predicted/groundtruth segments
# respectively.
gt_matched = set()
pred_matched = set()
# Calculate IoU per pair of intersecting segments of the same category.
for intersection_id, intersection_area in intersection_areas.items():
gt_panoptic_label = intersection_id // self.offset
pred_panoptic_label = intersection_id % self.offset
gt_category = gt_panoptic_label // self.max_instances_per_category
pred_category = pred_panoptic_label // self.max_instances_per_category
if gt_category != pred_category:
continue
if pred_category == self.ignored_label:
continue
# Union between the groundtruth and predicted segments being compared does
# not include the portion of the predicted segment that consists of
# groundtruth "void" pixels.
union = (
gt_segment_areas[gt_panoptic_label] +
pred_segment_areas[pred_panoptic_label] - intersection_area -
prediction_ignored_overlap(pred_panoptic_label))
iou = intersection_area / union
if iou > 0.5:
tp_per_class[gt_category] += 1
iou_per_class[gt_category] += iou
gt_matched.add(gt_panoptic_label)
pred_matched.add(pred_panoptic_label)
# Count false negatives for each category.
for gt_panoptic_label in gt_segment_areas:
if gt_panoptic_label in gt_matched:
continue
category = gt_panoptic_label // self.max_instances_per_category
# Failing to detect a void segment is not a false negative.
if category == self.ignored_label:
continue
fn_per_class[category] += 1
# Count false positives for each category.
for pred_panoptic_label in pred_segment_areas:
if pred_panoptic_label in pred_matched:
continue
# A false positive is not penalized if is mostly ignored in the
# groundtruth.
if (prediction_ignored_overlap(pred_panoptic_label) /
pred_segment_areas[pred_panoptic_label]) > 0.5:
continue
category = pred_panoptic_label // self.max_instances_per_category
if category == self.ignored_label:
continue
fp_per_class[category] += 1
return iou_per_class, tp_per_class, fn_per_class, fp_per_class
def update_state(
self,
y_true: tf.Tensor,
y_pred: tf.Tensor,
sample_weight: Optional[tf.Tensor] = None) -> List[tf.Operation]:
"""Accumulates the panoptic quality statistics.
Args:
y_true: The ground truth panoptic label map (defined as semantic_map *
max_instances_per_category + instance_map).
y_pred: The predicted panoptic label map (defined as semantic_map *
max_instances_per_category + instance_map).
sample_weight: Optional weighting of each example. Defaults to 1. Can be a
`Tensor` whose rank is either 0, or the same rank as `y_true`, and must
be broadcastable to `y_true`.
Returns:
Update ops for iou, tp, fn, fp.
"""
result = self.compare_and_accumulate(y_true, y_pred)
iou, tp, fn, fp = tuple(result)
update_iou_op = self.total_iou.assign_add(iou)
update_tp_op = self.total_tp.assign_add(tp)
update_fn_op = self.total_fn.assign_add(fn)
update_fp_op = self.total_fp.assign_add(fp)
return [update_iou_op, update_tp_op, update_fn_op, update_fp_op]
def result(self) -> tf.Tensor:
"""Computes the panoptic quality."""
sq = tf.math.divide_no_nan(self.total_iou, self.total_tp)
rq = tf.math.divide_no_nan(
self.total_tp,
self.total_tp + 0.5 * self.total_fn + 0.5 * self.total_fp)
pq = tf.math.multiply(sq, rq)
# Find the valid classes that will be used for evaluation. We will
# ignore classes which have (tp + fn + fp) equal to 0.
# The "ignore" label will be included in this based on logic that skips
# counting those instances/regions.
valid_classes = tf.not_equal(self.total_tp + self.total_fn + self.total_fp,
0)
# Compute averages over classes.
qualities = tf.stack(
[pq, sq, rq, self.total_tp, self.total_fn, self.total_fp], axis=0)
summarized_qualities = tf.math.reduce_mean(
tf.boolean_mask(qualities, valid_classes, axis=1), axis=1)
return summarized_qualities
def reset_states(self) -> None:
"""See base class."""
tf.keras.backend.set_value(self.total_iou, np.zeros(self.num_classes))
tf.keras.backend.set_value(self.total_tp, np.zeros(self.num_classes))
tf.keras.backend.set_value(self.total_fn, np.zeros(self.num_classes))
tf.keras.backend.set_value(self.total_fp, np.zeros(self.num_classes))
def get_config(self) -> Mapping[str, Any]:
"""See base class."""
config = {
'num_classes': self.num_classes,
'ignored_label': self.ignored_label,
'max_instances_per_category': self.max_instances_per_category,
'offset': self.offset,
}
base_config = super(PanopticQuality, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
|