File size: 29,833 Bytes
d1843be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
# coding=utf-8
# Copyright 2021 The Deeplab2 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""This file contains code to get a sample from a dataset."""

import functools

import numpy as np
import tensorflow as tf

from deeplab2 import common
from deeplab2.data import dataset_utils
from deeplab2.data.preprocessing import input_preprocessing as preprocessing


def _compute_gaussian_from_std(sigma):
  """Computes the Gaussian and its size from a given standard deviation."""
  size = int(6 * sigma + 3)
  x = np.arange(size, dtype=np.float)
  y = x[:, np.newaxis]
  x0, y0 = 3 * sigma + 1, 3 * sigma + 1
  return np.exp(-((x - x0)**2 + (y - y0)**2) / (2 * sigma**2)), size


class PanopticSampleGenerator:
  """This class generates samples from images and labels."""

  def __init__(self,
               dataset_info,
               is_training,
               crop_size,
               min_resize_value=None,
               max_resize_value=None,
               resize_factor=None,
               min_scale_factor=1.,
               max_scale_factor=1.,
               scale_factor_step_size=0,
               autoaugment_policy_name=None,
               only_semantic_annotations=False,
               thing_id_mask_annotations=False,
               max_thing_id=128,
               sigma=8,
               focus_small_instances=None):
    """Initializes the panoptic segmentation generator.

    Args:
      dataset_info: A dictionary with the following keys.
      - `name`: String, dataset name.
      - `ignore_label`: Integer, ignore label.
      - `class_has_instances_list`: A list of integers indicating which
        class has instance annotations.
      - `panoptic_label_divisor`: Integer, panoptic label divisor.
      - `num_classes`: Integer, number of classes.
      - `is_video_dataset`: Boolean, is video dataset or not.
      is_training: Boolean, is training mode or not.
      crop_size: Image crop size [height, width].
      min_resize_value: A 2-tuple of (height, width), desired minimum value
        after resize. If a single element is given, then height and width share
        the same value. None, empty or having 0 indicates no minimum value will
        be used.
      max_resize_value: A 2-tuple of (height, width), maximum allowed value
        after resize. If a single element is given, then height and width
        share the same value. None, empty or having 0 indicates no maximum
        value will be used.
      resize_factor: Resized dimensions are multiple of factor plus one.
      min_scale_factor: Minimum scale factor for random scale augmentation.
      max_scale_factor: Maximum scale factor for random scale augmentation.
      scale_factor_step_size: The step size from min scale factor to max scale
        factor. The input is randomly scaled based on the value of
        (min_scale_factor, max_scale_factor, scale_factor_step_size).
      autoaugment_policy_name: String, autoaugment policy name. See
        autoaugment_policy.py for available policies.
      only_semantic_annotations: An optional flag indicating whether the model
        needs only semantic annotations (default: False).
      thing_id_mask_annotations: An optional flag indicating whether the model
        needs thing_id_mask annotations. When `thing_id_mask_annotations` is
        True, we will additionally return mask annotation for each `thing`
        instance, encoded with a unique thing_id. This ground-truth annotation
        could be used to learn a better segmentation mask for each instance.
        `thing_id` indicates the number of unique thing-ID to each instance in
        an image, starting the counting from 0 (default: False).
      max_thing_id: The maximum number of possible thing instances per image. It
        is used together when thing_id_mask_annotations = True, representing the
        maximum thing ID encoded in the thing_id_mask. (default: 128).
      sigma: The standard deviation of the Gaussian used to encode the center
        keypoint (default: 8).
      focus_small_instances: An optional dict that defines how to deal with
        small instances (default: None):
        -`threshold`: An integer defining the threshold pixel number for an
          instance to be considered small.
        -`weight`: A number that defines the loss weight for small instances.
    """
    self._dataset_info = dataset_info
    self._ignore_label = self._dataset_info['ignore_label']
    self._only_semantic_annotations = only_semantic_annotations
    self._sigma = sigma
    self._instance_area_threshold = 0
    self._small_instance_weight = 1.0
    self._thing_id_mask_annotations = thing_id_mask_annotations
    self._max_thing_id = max_thing_id
    self._is_training = is_training
    self._preprocessing_fn = functools.partial(
        preprocessing.preprocess_image_and_label,
        crop_height=crop_size[0],
        crop_width=crop_size[1],
        min_resize_value=min_resize_value,
        max_resize_value=max_resize_value,
        resize_factor=resize_factor,
        min_scale_factor=min_scale_factor,
        max_scale_factor=max_scale_factor,
        scale_factor_step_size=scale_factor_step_size,
        autoaugment_policy_name=autoaugment_policy_name,
        ignore_label=self._ignore_label *
        self._dataset_info['panoptic_label_divisor'],
        is_training=self._is_training)

    if focus_small_instances is not None:
      self._instance_area_threshold = focus_small_instances['threshold']
      self._small_instance_weight = focus_small_instances['weight']

    self._gaussian, self._gaussian_size = _compute_gaussian_from_std(
        self._sigma)
    self._gaussian = tf.cast(tf.reshape(self._gaussian, [-1]), tf.float32)

  def __call__(self, sample_dict):
    """Gets a sample.

    Args:
      sample_dict: A dictionary with the following keys and values:
      - `image`: A tensor of shape [image_height, image_width, 3].
      - `image_name`: String, image name.
      - `label`: A tensor of shape [label_height, label_width, 1] or None.
      - `height`: An integer specifying the height of the image.
      - `width`: An integer specifying the width of the image.
      - `sequence`: An optional string specifying the sequence name.
      - `prev_image`: An optional tensor of the same shape as `image`.
      - `prev_label`: An optional tensor of the same shape as `label`.
      - `next_image`: An optional next-frame tensor of the shape of `image`.
      - `next_label`: An optional next-frame tensor of the shape of `label`.

    Returns:
      sample: A dictionary storing required data for panoptic segmentation.
    """
    return self.call(**sample_dict)

  def call(self,
           image,
           image_name,
           label,
           height,
           width,
           sequence='',
           prev_image=None,
           prev_label=None,
           next_image=None,
           next_label=None):
    """Gets a sample.

    Args:
      image: A tensor of shape [image_height, image_width, 3].
      image_name: String, image name.
      label: A tensor of shape [label_height, label_width, 1] or None.
      height: An integer specifying the height of the image.
      width: An integer specifying the width of the image.
      sequence: An optional string specifying the sequence name.
      prev_image: An optional tensor of shape [image_height, image_width, 3].
      prev_label: An optional tensor of shape [label_height, label_width, 1].
      next_image: An optional tensor of shape [image_height, image_width, 3].
      next_label: An optional tensor of shape [label_height, label_width, 1].

    Returns:
      sample: A dictionary storing required data for panoptic segmentation.

    Raises:
      ValueError: An error occurs when the label shape is invalid.
      NotImplementedError: An error occurs when thing_id_mask_annotations comes
        together with prev_image or prev_label, not currently implemented.
    """
    if label is not None:
      label.get_shape().assert_is_compatible_with(
          tf.TensorShape([None, None, 1]))
      original_label = tf.cast(label, dtype=tf.int32, name='original_label')
      if next_label is not None:
        original_next_label = tf.cast(
            next_label, dtype=tf.int32, name='original_next_label')
    # Reusing the preprocessing function for both next and prev samples.
    if next_image is not None:
      resized_image, image, label, next_image, next_label = (
          self._preprocessing_fn(
              image, label, prev_image=next_image, prev_label=next_label))
    else:
      resized_image, image, label, prev_image, prev_label = (
          self._preprocessing_fn(
              image, label, prev_image=prev_image, prev_label=prev_label))
    sample = {
        common.IMAGE: image
    }
    if prev_image is not None:
      sample[common.IMAGE] = tf.concat([image, prev_image], axis=2)
    if next_image is not None:
      sample[common.NEXT_IMAGE] = next_image
      sample[common.IMAGE] = tf.concat([image, next_image], axis=2)
    if label is not None:
      # Panoptic label for crowd regions will be ignore_label.
      semantic_label, panoptic_label, thing_mask, crowd_region = (
          dataset_utils.get_semantic_and_panoptic_label(
              self._dataset_info, label, self._ignore_label))
      sample[common.GT_SEMANTIC_KEY] = tf.squeeze(semantic_label, axis=2)
      semantic_weights = tf.ones_like(semantic_label, dtype=tf.float32)
      sample[common.SEMANTIC_LOSS_WEIGHT_KEY] = tf.squeeze(
          semantic_weights, axis=2)
      sample[common.GT_IS_CROWD] = tf.squeeze(crowd_region, axis=2)

      if not self._only_semantic_annotations:
        # The sample will have the original label including crowd regions.
        sample[common.GT_PANOPTIC_KEY] = tf.squeeze(label, axis=2)
        # Compute center loss for all non-crowd and non-ignore pixels.
        non_crowd_and_non_ignore_regions = tf.logical_and(
            tf.logical_not(crowd_region),
            tf.not_equal(semantic_label, self._ignore_label))
        sample[common.CENTER_LOSS_WEIGHT_KEY] = tf.squeeze(tf.cast(
            non_crowd_and_non_ignore_regions, tf.float32), axis=2)
        # Compute regression loss only for thing pixels that are not crowd.
        non_crowd_things = tf.logical_and(
            tf.logical_not(crowd_region), thing_mask)
        sample[common.REGRESSION_LOSS_WEIGHT_KEY] = tf.squeeze(tf.cast(
            non_crowd_things, tf.float32), axis=2)

        prev_panoptic_label = None
        next_panoptic_label = None
        if prev_label is not None:
          _, prev_panoptic_label, _, _ = (
              dataset_utils.get_semantic_and_panoptic_label(
                  self._dataset_info, prev_label, self._ignore_label))
        if next_label is not None:
          _, next_panoptic_label, _, _ = (
              dataset_utils.get_semantic_and_panoptic_label(
                  self._dataset_info, next_label, self._ignore_label))
        (sample[common.GT_INSTANCE_CENTER_KEY],
         sample[common.GT_INSTANCE_REGRESSION_KEY],
         sample[common.SEMANTIC_LOSS_WEIGHT_KEY],
         prev_center_map,
         frame_center_offsets,
         next_offset) = self._generate_gt_center_and_offset(
             panoptic_label, semantic_weights, prev_panoptic_label,
             next_panoptic_label)

        sample[common.GT_INSTANCE_REGRESSION_KEY] = tf.cast(
            sample[common.GT_INSTANCE_REGRESSION_KEY], tf.float32)

        if next_label is not None:
          sample[common.GT_NEXT_INSTANCE_REGRESSION_KEY] = tf.cast(
              next_offset, tf.float32)
          sample[common.NEXT_REGRESSION_LOSS_WEIGHT_KEY] = tf.cast(
              tf.greater(tf.reduce_sum(tf.abs(next_offset), axis=2), 0),
              tf.float32)

        # Only squeeze center map and semantic loss weights, as regression map
        # has two channels (x and y offsets).
        sample[common.GT_INSTANCE_CENTER_KEY] = tf.squeeze(
            sample[common.GT_INSTANCE_CENTER_KEY], axis=2)
        sample[common.SEMANTIC_LOSS_WEIGHT_KEY] = tf.squeeze(
            sample[common.SEMANTIC_LOSS_WEIGHT_KEY], axis=2)

        if prev_label is not None:
          sample[common.GT_FRAME_OFFSET_KEY] = frame_center_offsets
          sample[common.GT_FRAME_OFFSET_KEY] = tf.cast(
              sample[common.GT_FRAME_OFFSET_KEY], tf.float32)
          frame_offsets_present = tf.logical_or(
              tf.not_equal(frame_center_offsets[..., 0], 0),
              tf.not_equal(frame_center_offsets[..., 1], 0))
          sample[common.FRAME_REGRESSION_LOSS_WEIGHT_KEY] = tf.cast(
              frame_offsets_present, tf.float32)
          if self._is_training:
            sample[common.IMAGE] = tf.concat(
                [sample[common.IMAGE], prev_center_map], axis=2)

        if self._thing_id_mask_annotations:
          if any([prev_image is not None,
                  prev_label is not None,
                  next_image is not None,
                  next_label is not None]):
            raise NotImplementedError(
                'Current implementation of Max-DeepLab does not support '
                + 'prev_image, prev_label, next_image, or next_label.')
          thing_id_mask, thing_id_class = (
              self._generate_thing_id_mask_and_class(
                  panoptic_label, non_crowd_things))
          sample[common.GT_THING_ID_MASK_KEY] = tf.squeeze(
              thing_id_mask, axis=2)
          sample[common.GT_THING_ID_CLASS_KEY] = thing_id_class

    if not self._is_training:
      # Resized image is only used during visualization.
      sample[common.RESIZED_IMAGE] = resized_image
      sample[common.IMAGE_NAME] = image_name
      sample[common.GT_SIZE_RAW] = tf.stack([height, width], axis=0)
      if self._dataset_info['is_video_dataset']:
        sample[common.SEQUENCE_ID] = sequence
      # Keep original labels for evaluation.
      if label is not None:
        orig_semantic_label, _, _, orig_crowd_region = (
            dataset_utils.get_semantic_and_panoptic_label(
                self._dataset_info, original_label, self._ignore_label))
        sample[common.GT_SEMANTIC_RAW] = tf.squeeze(orig_semantic_label, axis=2)
        if not self._only_semantic_annotations:
          sample[common.GT_PANOPTIC_RAW] = tf.squeeze(original_label, axis=2)
          sample[common.GT_IS_CROWD_RAW] = tf.squeeze(orig_crowd_region)
          if next_label is not None:
            sample[common.GT_NEXT_PANOPTIC_RAW] = tf.squeeze(
                original_next_label, axis=2)
    return sample

  def _generate_thing_id_mask_and_class(self,
                                        panoptic_label,
                                        non_crowd_things):
    """Generates the ground-truth thing-ID masks and their class labels.

    It computes thing-ID mask and class with unique ID for each thing instance.
    `thing_id` indicates the number of unique thing-ID to each instance in an
    image, starting the counting from 0. Each pixel in thing_id_mask is labeled
    with the corresponding thing-ID.

    Args:
      panoptic_label: A tf.Tensor of shape [height, width, 1].
      non_crowd_things: A tf.Tensor of shape [height, width, 1], indicating
        non-crowd and thing-class regions.

    Returns:
      thing_id_mask: A tf.Tensor of shape [height, width, 1]. It assigns each
        non-crowd thing instance a unique mask-ID label, starting from 0.
        Unassigned pixels are set to -1.
      thing_id_class: A tf.Tensor of shape [max_thing_id]. It contains semantic
        ID of each instance assigned to thing_id_mask. The remaining
        (max_thing_id - num_things) elements are set to -1.

    Raises:
      ValueError: An error occurs when the thing-ID mask contains stuff or crowd
        region.
      ValueError: An error occurs when thing_count is greater or equal to
        self._max_thing_id.

    """
    unique_ids, _ = tf.unique(tf.reshape(panoptic_label, [-1]))
    thing_id_mask = -tf.ones_like(panoptic_label)
    thing_id_class = -tf.ones(self._max_thing_id)
    thing_count = 0
    for panoptic_id in unique_ids:
      semantic_id = panoptic_id // self._dataset_info['panoptic_label_divisor']
      # Filter out IDs that are not thing instances (i.e., IDs for ignore_label,
      # stuff classes or crowd). Stuff classes and crowd regions both have IDs
      # of the form panoptic_id = semantic_id * label_divisor (i.e., instance id
      # = 0)
      if (semantic_id == self._dataset_info['ignore_label'] or
          panoptic_id % self._dataset_info['panoptic_label_divisor'] == 0):
        continue

      assert_stuff_crowd = tf.debugging.Assert(
          tf.reduce_all(non_crowd_things[panoptic_label == panoptic_id]),
          ['thing-ID mask here must not contain stuff or crowd region.'])
      with tf.control_dependencies([assert_stuff_crowd]):
        panoptic_id = tf.identity(panoptic_id)

      thing_id_mask = tf.where(panoptic_label == panoptic_id,
                               thing_count, thing_id_mask)

      assert_thing_count = tf.debugging.Assert(
          thing_count < self._max_thing_id,
          ['thing_count must be smaller than self._max_thing_id.'])
      with tf.control_dependencies([assert_thing_count]):
        thing_count = tf.identity(thing_count)

      thing_id_class = tf.tensor_scatter_nd_update(
          thing_id_class, [[thing_count]], [semantic_id])
      thing_count += 1
    return thing_id_mask, thing_id_class

  def _generate_prev_centers_with_noise(self,
                                        panoptic_label,
                                        offset_noise_factor=0.05,
                                        false_positive_rate=0.2,
                                        false_positive_noise_factor=0.05):
    """Generates noisy center predictions for the previous frame.

    Args:
      panoptic_label: A tf.Tensor of shape [height, width, 1].
      offset_noise_factor: An optional float defining the maximum fraction of
        the object size that is used to displace the previous center.
      false_positive_rate: An optional float indicating at which probability
        false positives should be added.
      false_positive_noise_factor: An optional float defining the maximum
        fraction of the object size that is used to displace the false positive
        center.

    Returns:
      A tuple of (center, ids_to_center) with both being tf.Tensor of shape
      [height, width, 1] and shape [N, 2] where N is the number of unique IDs.
    """
    height = tf.shape(panoptic_label)[0]
    width = tf.shape(panoptic_label)[1]

    # Pad center to make boundary handling easier.
    center_pad_begin = int(round(3 * self._sigma + 1))
    center_pad_end = int(round(3 * self._sigma + 2))
    center_pad = center_pad_begin + center_pad_end

    center = tf.zeros((height + center_pad, width + center_pad))
    unique_ids, _ = tf.unique(tf.reshape(panoptic_label, [-1]))
    ids_to_center_x = tf.zeros_like(unique_ids, dtype=tf.int32)
    ids_to_center_y = tf.zeros_like(unique_ids, dtype=tf.int32)

    for panoptic_id in unique_ids:
      semantic_id = panoptic_id // self._dataset_info['panoptic_label_divisor']
      # Filter out IDs that should be ignored, are stuff classes or crowd.
      # Stuff classes and crowd regions both have IDs of the form panoptic_id =
      # semantic_id * label_divisor
      if (semantic_id == self._dataset_info['ignore_label'] or
          panoptic_id % self._dataset_info['panoptic_label_divisor'] == 0):
        continue

      # Convert [[y0, x0, 0], ...] to [[y0, ...], [x0, ...], [0, ...]].
      mask_index = tf.cast(
          tf.transpose(tf.where(panoptic_label == panoptic_id)), tf.float32)
      centers = tf.reduce_mean(mask_index, axis=1)
      bbox_size = (
          tf.reduce_max(mask_index, axis=1) - tf.reduce_min(mask_index, axis=1))

      # Add noise.
      center_y = (
          centers[0] + tf.random.normal([], dtype=tf.float32) *
          offset_noise_factor * bbox_size[0])
      center_x = (
          centers[1] + tf.random.normal([], dtype=tf.float32) *
          offset_noise_factor * bbox_size[1])

      center_x = tf.minimum(
          tf.maximum(tf.cast(tf.round(center_x), tf.int32), 0), width - 1)
      center_y = tf.minimum(
          tf.maximum(tf.cast(tf.round(center_y), tf.int32), 0), height - 1)

      id_index = tf.where(tf.equal(panoptic_id, unique_ids))
      ids_to_center_x = tf.tensor_scatter_nd_update(
          ids_to_center_x, id_index, tf.expand_dims(center_x, axis=0))
      ids_to_center_y = tf.tensor_scatter_nd_update(
          ids_to_center_y, id_index, tf.expand_dims(center_y, axis=0))

      def add_center_gaussian(center_x_coord, center_y_coord, center):
        # Due to the padding with center_pad_begin in center, the computed
        # center becomes the upper left corner in the center tensor.
        upper_left = center_x_coord, center_y_coord
        bottom_right = (upper_left[0] + self._gaussian_size,
                        upper_left[1] + self._gaussian_size)

        indices_x, indices_y = tf.meshgrid(
            tf.range(upper_left[0], bottom_right[0]),
            tf.range(upper_left[1], bottom_right[1]))
        indices = tf.transpose(
            tf.stack([tf.reshape(indices_y, [-1]),
                      tf.reshape(indices_x, [-1])]))

        return tf.tensor_scatter_nd_max(
            center, indices, self._gaussian, name='center_scatter')

      center = add_center_gaussian(center_x, center_y, center)
      # Generate false positives.
      center_y = (
          tf.cast(center_y, dtype=tf.float32) +
          tf.random.normal([], dtype=tf.float32) * false_positive_noise_factor *
          bbox_size[0])
      center_x = (
          tf.cast(center_x, dtype=tf.float32) +
          tf.random.normal([], dtype=tf.float32) * false_positive_noise_factor *
          bbox_size[1])

      center_x = tf.minimum(
          tf.maximum(tf.cast(tf.round(center_x), tf.int32), 0), width - 1)
      center_y = tf.minimum(
          tf.maximum(tf.cast(tf.round(center_y), tf.int32), 0), height - 1)
      # Draw a sample to decide whether to add a false positive or not.
      center = center + tf.cast(
          tf.random.uniform([], dtype=tf.float32) < false_positive_rate,
          tf.float32) * (
              add_center_gaussian(center_x, center_y, center) - center)

    center = center[center_pad_begin:(center_pad_begin + height),
                    center_pad_begin:(center_pad_begin + width)]
    center = tf.expand_dims(center, -1)
    return center, unique_ids, ids_to_center_x, ids_to_center_y

  def _generate_gt_center_and_offset(self,
                                     panoptic_label,
                                     semantic_weights,
                                     prev_panoptic_label=None,
                                     next_panoptic_label=None):
    """Generates the ground-truth center and offset from the panoptic labels.

    Additionally, the per-pixel weights for the semantic branch are increased
    for small instances. In case, prev_panoptic_label is passed, it also
    computes the previous center heatmap with random noise and the offsets
    between center maps.

    Args:
      panoptic_label: A tf.Tensor of shape [height, width, 1].
      semantic_weights: A tf.Tensor of shape [height, width, 1].
      prev_panoptic_label: An optional tf.Tensor of shape [height, width, 1].
      next_panoptic_label: An optional tf.Tensor of shape [height, width, 1].

    Returns:
      A tuple (center, offsets, weights, prev_center, frame_offset*,
      next_offset) with each being a tf.Tensor of shape [height, width, 1 (2*)].
      If prev_panoptic_label is None, prev_center and frame_offset are None.
      If next_panoptic_label is None, next_offset is None.
    """
    height = tf.shape(panoptic_label)[0]
    width = tf.shape(panoptic_label)[1]

    # Pad center to make boundary handling easier.
    center_pad_begin = int(round(3 * self._sigma + 1))
    center_pad_end = int(round(3 * self._sigma + 2))
    center_pad = center_pad_begin + center_pad_end

    center = tf.zeros((height + center_pad, width + center_pad))
    offset_x = tf.zeros((height, width, 1), dtype=tf.int32)
    offset_y = tf.zeros((height, width, 1), dtype=tf.int32)
    unique_ids, _ = tf.unique(tf.reshape(panoptic_label, [-1]))

    prev_center = None
    frame_offsets = None
    # Due to loop handling in tensorflow, these variables had to be defined for
    # all cases.
    frame_offset_x = tf.zeros((height, width, 1), dtype=tf.int32)
    frame_offset_y = tf.zeros((height, width, 1), dtype=tf.int32)

    # Next-frame instance offsets.
    next_offset = None
    next_offset_y = tf.zeros((height, width, 1), dtype=tf.int32)
    next_offset_x = tf.zeros((height, width, 1), dtype=tf.int32)

    if prev_panoptic_label is not None:
      (prev_center, prev_unique_ids, prev_centers_x, prev_centers_y
      ) = self._generate_prev_centers_with_noise(prev_panoptic_label)

    for panoptic_id in unique_ids:
      semantic_id = panoptic_id // self._dataset_info['panoptic_label_divisor']
      # Filter out IDs that should be ignored, are stuff classes or crowd.
      # Stuff classes and crowd regions both have IDs of the form panopti_id =
      # semantic_id * label_divisor
      if (semantic_id == self._dataset_info['ignore_label'] or
          panoptic_id % self._dataset_info['panoptic_label_divisor'] == 0):
        continue

      # Convert [[y0, x0, 0], ...] to [[y0, ...], [x0, ...], [0, ...]].
      mask_index = tf.transpose(tf.where(panoptic_label == panoptic_id))
      mask_y_index = mask_index[0]
      mask_x_index = mask_index[1]

      next_mask_index = None
      next_mask_y_index = None
      next_mask_x_index = None
      if next_panoptic_label is not None:
        next_mask_index = tf.transpose(
            tf.where(next_panoptic_label == panoptic_id))
        next_mask_y_index = next_mask_index[0]
        next_mask_x_index = next_mask_index[1]

      instance_area = tf.shape(mask_x_index)
      if instance_area < self._instance_area_threshold:
        semantic_weights = tf.where(panoptic_label == panoptic_id,
                                    self._small_instance_weight,
                                    semantic_weights)

      centers = tf.reduce_mean(tf.cast(mask_index, tf.float32), axis=1)

      center_x = tf.cast(tf.round(centers[1]), tf.int32)
      center_y = tf.cast(tf.round(centers[0]), tf.int32)

      # Due to the padding with center_pad_begin in center, the computed center
      # becomes the upper left corner in the center tensor.
      upper_left = center_x, center_y
      bottom_right = (upper_left[0] + self._gaussian_size,
                      upper_left[1] + self._gaussian_size)

      indices_x, indices_y = tf.meshgrid(
          tf.range(upper_left[0], bottom_right[0]),
          tf.range(upper_left[1], bottom_right[1]))
      indices = tf.transpose(
          tf.stack([tf.reshape(indices_y, [-1]),
                    tf.reshape(indices_x, [-1])]))

      center = tf.tensor_scatter_nd_max(
          center, indices, self._gaussian, name='center_scatter')
      offset_y = tf.tensor_scatter_nd_update(
          offset_y,
          tf.transpose(mask_index),
          center_y - tf.cast(mask_y_index, tf.int32),
          name='offset_y_scatter')
      offset_x = tf.tensor_scatter_nd_update(
          offset_x,
          tf.transpose(mask_index),
          center_x - tf.cast(mask_x_index, tf.int32),
          name='offset_x_scatter')
      if prev_panoptic_label is not None:
        mask = tf.equal(prev_unique_ids, panoptic_id)
        if tf.math.count_nonzero(mask) > 0:
          prev_center_x = prev_centers_x[mask]
          prev_center_y = prev_centers_y[mask]

          frame_offset_y = tf.tensor_scatter_nd_update(
              frame_offset_y,
              tf.transpose(mask_index),
              prev_center_y - tf.cast(mask_y_index, tf.int32),
              name='frame_offset_y_scatter')
          frame_offset_x = tf.tensor_scatter_nd_update(
              frame_offset_x,
              tf.transpose(mask_index),
              prev_center_x - tf.cast(mask_x_index, tf.int32),
              name='frame_offset_x_scatter')
      if next_panoptic_label is not None:
        next_offset_y = tf.tensor_scatter_nd_update(
            next_offset_y,
            tf.transpose(next_mask_index),
            center_y - tf.cast(next_mask_y_index, tf.int32),
            name='next_offset_y_scatter')
        next_offset_x = tf.tensor_scatter_nd_update(
            next_offset_x,
            tf.transpose(next_mask_index),
            center_x - tf.cast(next_mask_x_index, tf.int32),
            name='next_offset_x_scatter')

    offset = tf.concat([offset_y, offset_x], axis=2)
    center = center[center_pad_begin:(center_pad_begin + height),
                    center_pad_begin:(center_pad_begin + width)]
    center = tf.expand_dims(center, -1)
    if prev_panoptic_label is not None:
      frame_offsets = tf.concat([frame_offset_y, frame_offset_x], axis=2)
    if next_panoptic_label is not None:
      next_offset = tf.concat([next_offset_y, next_offset_x], axis=2)
    return (center, offset, semantic_weights, prev_center, frame_offsets,
            next_offset)