Spaces:
Runtime error
Runtime error
File size: 6,182 Bytes
d1843be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
# coding=utf-8
# Copyright 2021 The Deeplab2 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for build_step_data."""
import os
from absl import flags
import numpy as np
from PIL import Image
import tensorflow as tf
from deeplab2.data import build_step_data
FLAGS = flags.FLAGS
class BuildStepDataTest(tf.test.TestCase):
def setUp(self):
super().setUp()
self.data_dir = FLAGS.test_tmpdir
self.height = 100
self.width = 100
self.sequence_id = '010'
def _create_images(self, split):
image_path = os.path.join(self.data_dir, build_step_data._IMAGE_FOLDER_NAME,
split, self.sequence_id)
panoptic_map_path = os.path.join(self.data_dir,
build_step_data._PANOPTIC_MAP_FOLDER_NAME,
split, self.sequence_id)
tf.io.gfile.makedirs(image_path)
tf.io.gfile.makedirs(panoptic_map_path)
self.panoptic_maps = {}
for image_id in [101, 100]:
self.panoptic_maps[image_id] = self._create_image_and_panoptic_map(
image_path, panoptic_map_path, image_id)
def _create_image_and_panoptic_map(self, image_path, panoptic_path, image_id):
"""Creates dummy images and panoptic maps."""
# Dummy image.
image = np.random.randint(
0, 255, (self.height, self.width, 3), dtype=np.uint8)
with tf.io.gfile.GFile(
os.path.join(image_path, '%06d.png' % image_id), 'wb') as f:
Image.fromarray(image).save(f, format='PNG')
# Dummy panoptic map.
semantic = np.random.randint(
0, 20, (self.height, self.width), dtype=np.int32)
instance = np.random.randint(
0, 1000, (self.height, self.width), dtype=np.int32)
encoded_panoptic_map = np.dstack(
(semantic, instance // 256, instance % 256)).astype(np.uint8)
with tf.io.gfile.GFile(
os.path.join(panoptic_path, '%06d.png' % image_id), 'wb') as f:
Image.fromarray(encoded_panoptic_map).save(f, format='PNG')
decoded_panoptic_map = semantic * 1000 + instance
return decoded_panoptic_map
def test_build_step_dataset_correct(self):
split = 'train'
self._create_images(split)
build_step_data._convert_dataset(
step_root=self.data_dir,
dataset_split=split,
output_dir=FLAGS.test_tmpdir)
# We will have 2 shards with each shard containing 1 image.
num_shards = 2
output_record = os.path.join(
FLAGS.test_tmpdir, build_step_data._TF_RECORD_PATTERN %
(split, 0, num_shards))
self.assertTrue(tf.io.gfile.exists(output_record))
# Parses tf record.
image_ids = sorted(self.panoptic_maps)
for i, raw_record in enumerate(
tf.data.TFRecordDataset([output_record]).take(5)):
image_id = image_ids[i]
example = tf.train.Example.FromString(raw_record.numpy())
panoptic_map = np.fromstring(
example.features.feature['image/segmentation/class/encoded']
.bytes_list.value[0],
dtype=np.int32).reshape((self.height, self.width))
np.testing.assert_array_equal(panoptic_map, self.panoptic_maps[image_id])
self.assertEqual(
example.features.feature['video/sequence_id'].bytes_list.value[0],
b'010')
self.assertEqual(
example.features.feature['video/frame_id'].bytes_list.value[0],
b'%06d' % image_id)
def test_build_step_dataset_correct_with_two_frames(self):
split = 'train'
self._create_images(split)
build_step_data._convert_dataset(
step_root=self.data_dir,
dataset_split=split,
output_dir=FLAGS.test_tmpdir, use_two_frames=True)
num_shards = 2
output_record = os.path.join(
FLAGS.test_tmpdir, build_step_data._TF_RECORD_PATTERN %
(split, 0, num_shards))
self.assertTrue(tf.io.gfile.exists(output_record))
# Parses tf record.
image_ids = sorted(self.panoptic_maps)
for i, raw_record in enumerate(
tf.data.TFRecordDataset([output_record]).take(5)):
image_id = image_ids[i]
example = tf.train.Example.FromString(raw_record.numpy())
panoptic_map = np.fromstring(
example.features.feature['image/segmentation/class/encoded']
.bytes_list.value[0],
dtype=np.int32).reshape((self.height, self.width))
np.testing.assert_array_equal(panoptic_map, self.panoptic_maps[image_id])
prev_panoptic_map = np.fromstring(
example.features.feature['prev_image/segmentation/class/encoded']
.bytes_list.value[0],
dtype=np.int32).reshape((self.height, self.width))
if i == 0:
# First frame.
np.testing.assert_array_equal(panoptic_map, prev_panoptic_map)
else:
# Not a first frame.
np.testing.assert_array_equal(prev_panoptic_map, self.panoptic_maps[0])
self.assertEqual(
example.features.feature['video/sequence_id'].bytes_list.value[0],
b'010')
self.assertEqual(
example.features.feature['video/frame_id'].bytes_list.value[0],
b'%06d' % image_id)
def test_build_step_dataset_with_two_frames_shared_by_sequence(self):
split = 'val'
self._create_images(split)
build_step_data._convert_dataset(
step_root=self.data_dir,
dataset_split=split,
output_dir=FLAGS.test_tmpdir, use_two_frames=True)
# Only one shard since there is only one sequence for the val set.
num_shards = 1
output_record = os.path.join(
FLAGS.test_tmpdir, build_step_data._TF_RECORD_PATTERN %
(split, 0, num_shards))
self.assertTrue(tf.io.gfile.exists(output_record))
if __name__ == '__main__':
tf.test.main()
|