Spaces:
Runtime error
Runtime error
File size: 9,125 Bytes
d1843be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
# coding=utf-8
# Copyright 2021 The Deeplab2 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
r"""Converts Depth-aware Video Panoptic Segmentation (DVPS) data to sharded TFRecord file format with tf.train.Example protos.
The expected directory structure of the DVPS dataset should be as follows:
+ DVPS_ROOT
+ train | val
- ground-truth depth maps (*_depth.png)
- ground-truth panoptic maps (*_gtFine_instanceTrainIds.png)
- images (*_leftImg8bit.png)
+ test
- images (*_leftImg8bit.png)
The ground-truth panoptic map is encoded as the following in PNG format:
panoptic ID = semantic ID * panoptic divisor (1000) + instance ID
The output Example proto contains the following fields:
image/encoded: encoded image content.
image/filename: image filename.
image/format: image file format.
image/height: image height.
image/width: image width.
image/channels: image channels.
image/segmentation/class/encoded: encoded panoptic segmentation content.
image/segmentation/class/format: segmentation encoding format.
image/depth/encoded: encoded depth content.
image/depth/format: depth encoding format.
video/sequence_id: sequence ID of the frame.
video/frame_id: ID of the frame of the video sequence.
next_image/encoded: encoded next-frame image content.
next_image/segmentation/class/encoded: encoded panoptic segmentation content
of the next frame.
The output panoptic segmentation map stored in the Example will be the raw bytes
of an int32 panoptic map, where each pixel is assigned to a panoptic ID:
panoptic ID = semantic ID * panoptic divisor (1000) + instance ID
where semantic ID will be the same with `category_id` for each segment, and
ignore label for pixels not belong to any segment.
The depth map will be the raw bytes of an int32 depth map, where each pixel is:
depth map = depth ground truth * 256
Example to run the scipt:
python deeplab2/data/build_dvps_data.py \
--dvps_root=${DVPS_ROOT} \
--output_dir=${OUTPUT_DIR}
"""
import math
import os
from typing import Sequence, Tuple, Optional
from absl import app
from absl import flags
from absl import logging
import numpy as np
from PIL import Image
import tensorflow as tf
from deeplab2.data import data_utils
FLAGS = flags.FLAGS
flags.DEFINE_string('dvps_root', None, 'DVPS dataset root folder.')
flags.DEFINE_string('output_dir', None,
'Path to save converted TFRecord of TensorFlow examples.')
_PANOPTIC_DEPTH_FORMAT = 'raw'
_NUM_SHARDS = 1000
_TF_RECORD_PATTERN = '%s-%05d-of-%05d.tfrecord'
_IMAGE_SUFFIX = '_leftImg8bit.png'
_LABEL_SUFFIX = '_gtFine_instanceTrainIds.png'
_DEPTH_SUFFIX = '_depth.png'
def _get_image_info_from_path(image_path: str) -> Tuple[str, str]:
"""Gets image info including sequence id and image id.
Image path is in the format of '{sequence_id}_{image_id}_*.png',
where `sequence_id` refers to the id of the video sequence, and `image_id` is
the id of the image in the video sequence.
Args:
image_path: Absolute path of the image.
Returns:
sequence_id, and image_id as strings.
"""
image_path = os.path.basename(image_path)
return tuple(image_path.split('_')[:2])
def _get_images(dvps_root: str, dataset_split: str) -> Sequence[str]:
"""Gets files for the specified data type and dataset split.
Args:
dvps_root: String, path to DVPS dataset root folder.
dataset_split: String, dataset split ('train', 'val', 'test').
Returns:
A list of sorted file names under dvps_root and dataset_split.
"""
search_files = os.path.join(dvps_root, dataset_split, '*' + _IMAGE_SUFFIX)
filenames = tf.io.gfile.glob(search_files)
return sorted(filenames)
def _decode_panoptic_or_depth_map(map_path: str) -> Optional[str]:
"""Decodes the panoptic or depth map from encoded image file.
Args:
map_path: Path to the panoptic or depth map image file.
Returns:
Panoptic or depth map as an encoded int32 numpy array bytes or None if not
existing.
"""
if not tf.io.gfile.exists(map_path):
return None
with tf.io.gfile.GFile(map_path, 'rb') as f:
decoded_map = np.array(Image.open(f)).astype(np.int32)
return decoded_map.tobytes()
def _get_next_frame_path(image_path: str) -> Optional[str]:
"""Gets next frame path.
If not exists, return None.
The files are named {sequence_id}_{frame_id}*. To get the path of the next
frame, this function keeps sequence_id and increase the frame_id by 1. It
finds all the files matching this pattern, and returns the corresponding
file path matching the input type.
Args:
image_path: String, path to the image.
Returns:
A string for the path of the next frame of the given image path or None if
the given image path is the last frame of the sequence.
"""
sequence_id, image_id = _get_image_info_from_path(image_path)
next_image_id = '{:06d}'.format(int(image_id) + 1)
next_image_name = sequence_id + '_' + next_image_id
next_image_path = None
for suffix in (_IMAGE_SUFFIX, _LABEL_SUFFIX):
if image_path.endswith(suffix):
next_image_path = os.path.join(
os.path.dirname(image_path), next_image_name + suffix)
if not tf.io.gfile.exists(next_image_path):
return None
return next_image_path
def _create_tfexample(image_path: str, panoptic_map_path: str,
depth_map_path: str) -> Optional[tf.train.Example]:
"""Creates a TF example for each image.
Args:
image_path: Path to the image.
panoptic_map_path: Path to the panoptic map (as an image file).
depth_map_path: Path to the depth map (as an image file).
Returns:
TF example proto.
"""
with tf.io.gfile.GFile(image_path, 'rb') as f:
image_data = f.read()
label_data = _decode_panoptic_or_depth_map(panoptic_map_path)
depth_data = _decode_panoptic_or_depth_map(depth_map_path)
image_name = os.path.basename(image_path)
image_format = image_name.split('.')[1].lower()
sequence_id, frame_id = _get_image_info_from_path(image_path)
next_image_data = None
next_label_data = None
# Next image.
next_image_path = _get_next_frame_path(image_path)
# If there is no next image, no examples will be created.
if next_image_path is None:
return None
with tf.io.gfile.GFile(next_image_path, 'rb') as f:
next_image_data = f.read()
# Next panoptic map.
next_panoptic_map_path = _get_next_frame_path(panoptic_map_path)
next_label_data = _decode_panoptic_or_depth_map(next_panoptic_map_path)
return data_utils.create_video_and_depth_tfexample(
image_data,
image_format,
image_name,
label_format=_PANOPTIC_DEPTH_FORMAT,
sequence_id=sequence_id,
image_id=frame_id,
label_data=label_data,
next_image_data=next_image_data,
next_label_data=next_label_data,
depth_data=depth_data,
depth_format=_PANOPTIC_DEPTH_FORMAT)
def _convert_dataset(dvps_root: str, dataset_split: str, output_dir: str):
"""Converts the specified dataset split to TFRecord format.
Args:
dvps_root: String, path to DVPS dataset root folder.
dataset_split: String, the dataset split (e.g., train, val, test).
output_dir: String, directory to write output TFRecords to.
"""
image_files = _get_images(dvps_root, dataset_split)
num_images = len(image_files)
num_per_shard = int(math.ceil(len(image_files) / _NUM_SHARDS))
for shard_id in range(_NUM_SHARDS):
shard_filename = _TF_RECORD_PATTERN % (dataset_split, shard_id, _NUM_SHARDS)
output_filename = os.path.join(output_dir, shard_filename)
with tf.io.TFRecordWriter(output_filename) as tfrecord_writer:
start_idx = shard_id * num_per_shard
end_idx = min((shard_id + 1) * num_per_shard, num_images)
for i in range(start_idx, end_idx):
image_path = image_files[i]
panoptic_map_path = image_path.replace(_IMAGE_SUFFIX, _LABEL_SUFFIX)
depth_map_path = image_path.replace(_IMAGE_SUFFIX, _DEPTH_SUFFIX)
example = _create_tfexample(image_path, panoptic_map_path,
depth_map_path)
if example is not None:
tfrecord_writer.write(example.SerializeToString())
def main(argv: Sequence[str]) -> None:
if len(argv) > 1:
raise app.UsageError('Too many command-line arguments.')
tf.io.gfile.makedirs(FLAGS.output_dir)
for dataset_split in ('train', 'val', 'test'):
logging.info('Starts to processing DVPS dataset split %s.', dataset_split)
_convert_dataset(FLAGS.dvps_root, dataset_split, FLAGS.output_dir)
if __name__ == '__main__':
app.run(main)
|