File size: 3,926 Bytes
0d405b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
import streamlit as st
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain_google_genai import ChatGoogleGenerativeAI
import fitz
import json
# Title
st.title("π PDF-based MCQ Generator")
# Sidebar
st.sidebar.title("Upload & Settings")
# Upload PDF
pdf_file = st.sidebar.file_uploader("Upload a PDF file", type=["pdf"])
# Number of questions
number_of_questions = st.sidebar.slider("Number of questions", min_value=1, max_value=20, value=5)
# Session states
if "mcqs" not in st.session_state:
st.session_state.mcqs = []
if "current_q" not in st.session_state:
st.session_state.current_q = 0
if "user_answers" not in st.session_state:
st.session_state.user_answers = {}
if "quiz_finished" not in st.session_state:
st.session_state.quiz_finished = False
# Gemini setup
GOOGLE_API_KEY = "AIzaSyCB5NLx39vOAlfRQBDmnEG3uLBgLraGvH4"
llm = ChatGoogleGenerativeAI(
model="gemini-2.0-flash",
google_api_key=GOOGLE_API_KEY,
temperature=0.7
)
template = """
You are an expert MCQ generator. Generate {number} unique multiple-choice questions from the given text.
Each question must have exactly 1 correct answer and 3 incorrect options.
Strictly return output in the following JSON format (no explanations, no markdown):
[
{{
"question": "What is ...?",
"options": ["Option A", "Option B", "Option C", "Option D"],
"answer": "Option D"
}},
...
]
TEXT:
{text}
"""
prompt = PromptTemplate(
input_variables=["text", "number"],
template=template
)
mcq_chain = LLMChain(llm=llm, prompt=prompt)
# PDF text extractor
def extract_text_from_pdf(pdf):
doc = fitz.open(stream=pdf.read(), filetype="pdf")
full_text = ""
for page in doc:
full_text += page.get_text()
doc.close()
return full_text
# Generate MCQs
if st.sidebar.button("Generate MCQs"):
if pdf_file is None:
st.error("Please upload a PDF file.")
else:
with st.spinner("Extracting text and generating MCQs..."):
text = extract_text_from_pdf(pdf_file)
try:
response = mcq_chain.run(text=text, number=str(number_of_questions))
# st.subheader("π Raw Output (Debugging)")
# st.code(response)
mcqs_json = json.loads(response.strip())
st.session_state.mcqs = mcqs_json
st.session_state.current_q = 0
st.session_state.user_answers = {}
st.session_state.quiz_finished = False
st.success("β
MCQs generated successfully!")
except Exception as e:
st.error(f"Error generating MCQs: {e}")
# Display question
if st.session_state.mcqs and not st.session_state.quiz_finished:
idx = st.session_state.current_q
q_data = st.session_state.mcqs[idx]
st.subheader(f"Question {idx + 1}: {q_data['question']}")
selected_option = st.radio(
"Choose an answer:",
q_data["options"],
key=f"radio_{idx}"
)
if st.button("Next"):
st.session_state.user_answers[idx] = selected_option
if st.session_state.current_q < len(st.session_state.mcqs) - 1:
st.session_state.current_q += 1
else:
st.session_state.quiz_finished = True
st.success("π Quiz completed!")
# Show result
if st.session_state.quiz_finished:
st.header("π Quiz Results")
score = 0
total = len(st.session_state.mcqs)
for i, q in enumerate(st.session_state.mcqs):
user_ans = st.session_state.user_answers.get(i)
correct_ans = q["answer"]
if user_ans == correct_ans:
score += 1
st.markdown(f"**Q{i+1}: {q['question']}**")
st.markdown(f"- Your answer: {user_ans}")
st.markdown(f"- Correct answer: {correct_ans}")
st.markdown("---")
st.success(f"β
You scored {score} out of {total}")
|