import streamlit as st import torch import torch.nn as nn from torchvision import transforms, datasets, models from PIL import Image st.markdown( """ """, unsafe_allow_html=True ) # Title st.title("Brain Tumor Classification") st.write("") # Class names class_names = ['glioma_tumor', 'meningioma_tumor', 'no_tumor', 'pituitary_tumor'] # Load pre-trained ResNet18 model model = models.resnet18(weights=models.ResNet18_Weights.DEFAULT) num_of_classes = len(class_names) num_of_features = model.fc.in_features model.fc = nn.Linear(num_of_features, num_of_classes) # Load trained model weights model.load_state_dict(torch.load('resnet18_model (1).pth', map_location=torch.device('cpu'))) model.eval() st.markdown( """
📤 Upload a Scan Image
""", unsafe_allow_html=True ) # Image upload uploaded_img = st.file_uploader("", type=["jpg", "jpeg", "png"]) if st.button("Submit"): if uploaded_img is not None: # Display uploaded image in a smaller size image = Image.open(uploaded_img) st.image(image, caption="**Uploaded Image**", width=200) # Image transformations sample_transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.1776, 0.1776, 0.1776], std=[0.1735, 0.1735, 0.1735]) ]) # Apply transformations transformed_img = sample_transform(image).unsqueeze(0) # Model inference with torch.no_grad(): pred = model(transformed_img).argmax(dim=1).item() # Stylish output box st.markdown( f"""
🧠 Predicted Class: {class_names[pred]}
""", unsafe_allow_html=True ) else: st.markdown( """

⚠️ Plese upload image

""", unsafe_allow_html=True )