|
import streamlit as st |
|
import torch |
|
import torch.nn as nn |
|
from torchvision import transforms, datasets, models |
|
from PIL import Image |
|
|
|
st.markdown( |
|
""" |
|
<style> |
|
/* Set background image for the entire app */ |
|
.stApp { |
|
background: url('https://cdn.i-scmp.com/sites/default/files/images/methode/2016/05/06/078562fe-1286-11e6-95eb-aaf30b46b489_image_hires.JPG') no-repeat center center fixed; |
|
background-size: cover; |
|
} |
|
.stApp h1 { |
|
background: linear-gradient(to right, #4b6cb7, #182848); |
|
color: white; |
|
padding: 15px 25px; |
|
border-radius: 15px; |
|
font-size: 2.5em; |
|
text-align: center; |
|
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.3); |
|
max-width: 90%; |
|
margin: 30px auto; |
|
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; |
|
} |
|
/* Style for the button */ |
|
.stButton>button { |
|
background-color: #4CAF50; /* Green */ |
|
color: white; |
|
font-size: 1.2em; |
|
border-radius: 10px; |
|
padding: 10px 24px; |
|
border: none; |
|
} |
|
/* Center the button */ |
|
.stButton { |
|
display: flex; |
|
justify-content: center; |
|
} |
|
/* Style for the output container */ |
|
.output-container { |
|
background-color: lightpink; |
|
color: black; |
|
font-size: 1.5em; |
|
padding: 15px; |
|
border-radius: 10px; |
|
margin-top: 20px; |
|
box-shadow: 0 4px 8px rgba(0,0,0,0.1); |
|
width: 100%; |
|
margin-left: auto; |
|
margin-right: auto; |
|
text-align: center; |
|
} |
|
</style> |
|
""", |
|
unsafe_allow_html=True |
|
) |
|
|
|
st.title("Brain Tumor Classification") |
|
st.write("") |
|
|
|
|
|
class_names = ['glioma_tumor', 'meningioma_tumor', 'no_tumor', 'pituitary_tumor'] |
|
|
|
|
|
model = models.resnet18(weights=models.ResNet18_Weights.DEFAULT) |
|
num_of_classes = len(class_names) |
|
num_of_features = model.fc.in_features |
|
model.fc = nn.Linear(num_of_features, num_of_classes) |
|
|
|
|
|
model.load_state_dict(torch.load('resnet18_model (1).pth', map_location=torch.device('cpu'))) |
|
model.eval() |
|
|
|
st.markdown( |
|
""" |
|
<div style=' |
|
background: weight: |
|
font-weight: bold; |
|
font-size: 25px; |
|
color: black; |
|
margin-bottom: 10px; |
|
'> |
|
📤 Upload a Scan Image |
|
</div> |
|
""", |
|
unsafe_allow_html=True |
|
) |
|
|
|
uploaded_img = st.file_uploader("", type=["jpg", "jpeg", "png"]) |
|
if st.button("Submit"): |
|
if uploaded_img is not None: |
|
|
|
image = Image.open(uploaded_img) |
|
st.image(image, caption="**Uploaded Image**", width=200) |
|
|
|
|
|
sample_transform = transforms.Compose([ |
|
transforms.Resize((224, 224)), |
|
transforms.ToTensor(), |
|
transforms.Normalize(mean=[0.1776, 0.1776, 0.1776], std=[0.1735, 0.1735, 0.1735]) |
|
]) |
|
|
|
|
|
transformed_img = sample_transform(image).unsqueeze(0) |
|
|
|
|
|
with torch.no_grad(): |
|
pred = model(transformed_img).argmax(dim=1).item() |
|
|
|
|
|
st.markdown( |
|
f""" |
|
<div class="output-container"> |
|
🧠 <strong>Predicted Class:</strong> {class_names[pred]} |
|
</div> |
|
""", |
|
unsafe_allow_html=True |
|
) |
|
else: |
|
st.markdown( |
|
""" |
|
<div style='background-color: #f8d7da; padding: 10px; border-radius: 5px;'> |
|
<h4 style='color: #721c24;'> ⚠️ Plese upload image </h4> |
|
</div> |
|
""", |
|
unsafe_allow_html=True |
|
) |