File size: 16,812 Bytes
4e4d03e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e9a884
4e4d03e
 
1b4e3b5
4e4d03e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b4e3b5
4e4d03e
 
 
 
 
 
 
 
 
1b4e3b5
4e4d03e
 
 
 
 
 
 
 
 
1b4e3b5
4e4d03e
 
 
 
 
 
 
 
 
 
1b4e3b5
4e4d03e
 
 
 
 
 
 
 
 
1b4e3b5
4e4d03e
 
 
 
 
 
 
 
 
1b4e3b5
4e4d03e
 
 
 
 
 
 
 
 
 
1b4e3b5
4e4d03e
 
 
 
 
 
 
 
 
1b4e3b5
4e4d03e
 
 
 
 
 
 
 
 
1b4e3b5
4e4d03e
 
 
 
 
 
 
 
 
 
1b4e3b5
4e4d03e
 
 
 
 
 
 
 
 
1b4e3b5
4e4d03e
 
 
 
 
 
 
 
 
1b4e3b5
4e4d03e
 
 
 
 
 
 
 
 
 
1b4e3b5
4e4d03e
 
 
 
 
 
 
 
 
1b4e3b5
4e4d03e
 
 
 
 
 
 
 
 
1b4e3b5
4e4d03e
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
from huggingface_hub import hf_hub_download, login
import cv2
import numpy as np
import pickle  # for loading tile features and raw images
from skimage.feature import local_binary_pattern, graycomatrix, graycoprops, hog
from skimage.metrics import structural_similarity as ssim, peak_signal_noise_ratio as psnr
from PIL import Image
import gradio as gr
import time
import os

# ---------------------------------------------------------------------
# Feature Extraction Functions
# ---------------------------------------------------------------------
def get_average_color(image):
    """Compute the average color (per channel) of the image (BGR format)."""
    return np.mean(image, axis=(0, 1))

def get_color_histogram(image, bins=(8, 8, 8)):
    """Compute a normalized color histogram in HSV color space."""
    hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
    hist = cv2.calcHist([hsv], [0, 1, 2], None, bins, [0, 180, 0, 256, 0, 256])
    cv2.normalize(hist, hist)
    return hist.flatten()

def get_lbp_histogram(image, numPoints=24, radius=8, bins=59):
    """Compute a histogram of Local Binary Patterns (LBP) from the grayscale image."""
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    lbp = local_binary_pattern(gray, numPoints, radius, method="uniform")
    hist, _ = np.histogram(lbp.ravel(), bins=bins, range=(0, bins))
    hist = hist.astype("float")
    hist /= (hist.sum() + 1e-7)
    return hist

def get_glcm_features(image, distances=[1, 2, 4], angles=[0, np.pi/4, np.pi/2, 3*np.pi/4],
                      properties=('contrast', 'dissimilarity', 'homogeneity', 'energy', 'correlation', 'ASM')):
    """
    Compute GLCM (Gray Level Co-occurrence Matrix) features (Haralick features).
    Returns a concatenated feature vector of all requested properties, for each distance & angle.
    """
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    glcm = graycomatrix(gray, distances=distances, angles=angles, levels=256,
                        symmetric=True, normed=True)
    feats = []
    for prop in properties:
        vals = graycoprops(glcm, prop)
        feats.append(vals.ravel())
    return np.hstack(feats)

def get_hog_features(image, orientations=9, pixels_per_cell=(8, 8),
                     cells_per_block=(2, 2), block_norm='L2-Hys'):
    """
    Compute Histogram of Oriented Gradients (HOG) from the grayscale image.
    The image is forcibly resized to 16×16 to avoid errors.
    """
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    return hog(gray, orientations=orientations, pixels_per_cell=pixels_per_cell,
               cells_per_block=(2, 2), block_norm=block_norm)

def get_combined_features(image):
    """
    Compute and combine all features in the following order:
      - Average Color (3)
      - HSV Color Histogram (512)
      - LBP Histogram (59)
      - GLCM Features (72)
      - HOG Features (36)
    Total length = 682.
    """
    avg_color = get_average_color(image)
    color_hist = get_color_histogram(image)
    lbp_hist = get_lbp_histogram(image)
    glcm_feats = get_glcm_features(image)
    hog_feats = get_hog_features(cv2.resize(image, (16, 16), interpolation=cv2.INTER_LINEAR))
    return np.concatenate([avg_color, color_hist, lbp_hist, glcm_feats, hog_feats])

# ---------------------------------------------------------------------
# Feature Dictionary and Order
# ---------------------------------------------------------------------
FEATURES = {
    "Average Color (Color, Fast)": {
        "func": get_average_color,
        "range": (0, 3)
    },
    "HSV Histogram (Color Dist., Slow)": {
        "func": get_color_histogram,
        "range": (3, 515)
    },
    "LBP Histogram (Texture, Normal)": {
        "func": get_lbp_histogram,
        "range": (515, 574)
    },
    "GLCM Features (Texture Stats, Very Slow)": {
        "func": get_glcm_features,
        "range": (574, 646)
    },
    "HOG Features (Edges/Shapes, Normal)": {
        "func": lambda image: get_hog_features(cv2.resize(image, (16, 16), interpolation=cv2.INTER_LINEAR)),
        "range": (646, 682)
    }
}
FEATURE_ORDER = list(FEATURES.keys())

def get_selected_features(image, selected_features):
    """
    Compute and combine only the selected features from the image.
    Uses the canonical order defined in FEATURE_ORDER.
    """
    feats = []
    for feat in FEATURE_ORDER:
        if feat in selected_features:
            feats.append(FEATURES[feat]["func"](image))
    if not feats:
        return np.array([], dtype=np.float32)
    return np.concatenate(feats).astype(np.float32)

# ---------------------------------------------------------------------
# Load Precomputed Tile Features & Raw Images
# ---------------------------------------------------------------------
try:
    with open("tile_features.pkl", "rb") as f:
        data = pickle.load(f)
    tile_features = data["features"]   # shape: (num_tiles, 682)
    tile_paths = data["paths"]         # e.g. "image_dataset/21837.jpg"
    print(f"Loaded {len(tile_paths)} tile features from tile_features.pkl")
except Exception as e:
    print("Error loading tile features from local file:", e)
    tile_features = None
    tile_paths = None

try:
    with open("tile_images_raw.pkl", "rb") as f:
        raw_images_dict = pickle.load(f)
    print(f"Loaded raw images dictionary with {len(raw_images_dict)} entries.")
except Exception as e:
    print("Error loading raw images dictionary:", e)
    raw_images_dict = {}

def get_tile_image(tile_path):
    """
    Given a tile image path from the features pickle (e.g. "image_dataset\\21837.jpg"),
    decode it from the raw_images_dict. Expects tile to be ~150×150.
    """
    fixed_path = tile_path.replace("\\", "/").strip()
    if fixed_path in raw_images_dict:
        raw_bytes = raw_images_dict[fixed_path]
        np_arr = np.frombuffer(raw_bytes, np.uint8)
        img = cv2.imdecode(np_arr, cv2.IMREAD_COLOR)
        if img is None:
            print(f"cv2.imdecode failed for: {fixed_path}")
        return img
    else:
        print(f"Tile image '{fixed_path}' not found.")
        return None

# ---------------------------------------------------------------------
# Mosaic Generation Function (No tile scaling, with Output Scale)
# ---------------------------------------------------------------------
def mosaic_generator(user_img, block_size, output_scale=1.0,
                     weight_avg_color=1.0, weight_hsv_hist=1.0,
                     weight_lbp=1.0, weight_glcm=1.0, weight_hog=1.0):
    """
    Create a photomosaic using 150×150 tiles with no tile scaling.
    For each block (block_size x block_size) in the cropped user image, compute the selected features
    and perform a weighted linear search over the tile_features subset.
    
    Each block is replaced by one 150×150 tile, so the final mosaic dimensions are:
      (grid_rows * 150) x (grid_cols * 150).
      
    The final mosaic is optionally rescaled by output_scale (range: 0.1 to 1.0; default 1.0).
    
    Performance metrics (MSE, SSIM, PSNR) compare the original cropped image with a downsized version
    of the mosaic.
    """
    start_time = time.time()

    # Build a dictionary of feature weights.
    feature_weights = {
        "Average Color (Color, Fast)": weight_avg_color,
        "HSV Histogram (Color Dist., Slow)": weight_hsv_hist,
        "LBP Histogram (Texture, Normal)": weight_lbp,
        "GLCM Features (Texture Stats, Very Slow)": weight_glcm,
        "HOG Features (Edges/Shapes, Normal)": weight_hog
    }
    effective_features = [f for f in FEATURE_ORDER if feature_weights.get(f, 0) > 0]
    if not effective_features:
        return "Error: All features have weight = 0. Please enable at least one feature.", ""

    # Build the tile_feature subset for only the selected features.
    selected_indices = []
    weights_list = []
    for feat in FEATURE_ORDER:
        if feat in effective_features:
            start_idx, end_idx = FEATURES[feat]["range"]
            selected_indices.extend(range(start_idx, end_idx))
            w = feature_weights[feat]
            weights_list.extend([w] * (end_idx - start_idx))
    weights_vector = np.array(weights_list, dtype=np.float32)

    if tile_features is None or tile_paths is None:
        return "Error: Tile features are not loaded or incompatible.", ""
    tile_subset = tile_features[:, selected_indices].astype(np.float32)

    # Crop the user image to multiples of block_size.
    user_img_bgr = cv2.cvtColor(np.array(user_img), cv2.COLOR_RGB2BGR)
    h, w, _ = user_img_bgr.shape
    new_h = (h // block_size) * block_size
    new_w = (w // block_size) * block_size
    user_img_bgr = user_img_bgr[:new_h, :new_w]
    grid_rows = new_h // block_size
    grid_cols = new_w // block_size

    # Save a copy in RGB for final metrics.
    original_cropped_rgb = cv2.cvtColor(user_img_bgr, cv2.COLOR_BGR2RGB)

    mosaic_grid = []
    progress = gr.Progress()  # Row-by-row progress bar

    for row in range(grid_rows):
        row_tiles = []
        for col in range(grid_cols):
            y = row * block_size
            x = col * block_size
            block = user_img_bgr[y:y+block_size, x:x+block_size]
            
            # Compute only the selected features from this block.
            query_feats = get_selected_features(block, effective_features)
            if query_feats.size == 0:
                best_tile = np.zeros((150, 150, 3), dtype=np.uint8)
                row_tiles.append(best_tile)
                continue
            query_feats = query_feats.reshape(1, -1)
            query_weighted = query_feats * weights_vector
            tile_subset_weighted = tile_subset * weights_vector

            dists = np.linalg.norm(tile_subset_weighted - query_weighted, axis=1)
            best_idx = np.argmin(dists)

            best_tile_path = tile_paths[best_idx]
            best_tile = get_tile_image(best_tile_path)
            if best_tile is None:
                best_tile = np.zeros((150, 150, 3), dtype=np.uint8)
            else:
                if best_tile.shape[:2] != (150, 150):
                    best_tile = cv2.resize(best_tile, (150, 150), interpolation=cv2.INTER_AREA)
            row_tiles.append(best_tile)

        row_image = np.hstack(row_tiles)
        mosaic_grid.append(row_image)
        progress((row + 1) / grid_rows, desc=f"Processed row {row+1}/{grid_rows}")

    mosaic_bgr = np.vstack(mosaic_grid)
    mosaic_rgb = cv2.cvtColor(mosaic_bgr, cv2.COLOR_BGR2RGB)

    # Rescale mosaic output if output_scale is not 1.0.
    if output_scale != 1.0:
        out_w = int(mosaic_rgb.shape[1] * output_scale)
        out_h = int(mosaic_rgb.shape[0] * output_scale)
        mosaic_rgb = cv2.resize(mosaic_rgb, (out_w, out_h), interpolation=cv2.INTER_LINEAR)

    end_time = time.time()
    processing_time = end_time - start_time
    total_blocks = grid_rows * grid_cols

    # For performance metrics, downsize the mosaic to match original cropped dimensions.
    orig_h, orig_w, _ = original_cropped_rgb.shape
    mosaic_resized_for_metrics = cv2.resize(mosaic_rgb, (orig_w, orig_h), interpolation=cv2.INTER_AREA)

    mse_val = np.mean((original_cropped_rgb.astype(np.float32) - mosaic_resized_for_metrics.astype(np.float32)) ** 2)
    ssim_val = ssim(original_cropped_rgb, mosaic_resized_for_metrics, channel_axis=-1, win_size=3)
    psnr_val = psnr(original_cropped_rgb, mosaic_resized_for_metrics)

    metrics = (
        f"Processing Time: {processing_time:.2f} seconds\n"
        f"Grid Dimensions: {grid_rows} rows x {grid_cols} columns\n"
        f"Total Blocks Processed: {total_blocks}\n"
        f"MSE: {mse_val:.2f}\n"
        f"SSIM: {ssim_val:.4f}\n"
        f"PSNR: {psnr_val:.2f} dB\n"
    )

    return mosaic_rgb, metrics

# ---------------------------------------------------------------------
# Gradio Interface
# ---------------------------------------------------------------------
iface = gr.Interface(
    fn=mosaic_generator,
    cache_examples=True,
    inputs=[
        gr.Image(type="pil", label="Upload Your Image"),
        gr.Slider(minimum=1, maximum=32, step=1, value=20,
                  label="Block Size (px) for Feature Extraction"),
        gr.Slider(minimum=0.1, maximum=1.0, step=0.1, value=1.0,
                  label="Output Scale (0.1 to 1.0)"),
        # Feature priority sliders:
        gr.Slider(minimum=0.0, maximum=5.0, step=0.1, value=3.5,
                  label="Priority for Average Color (Fast)"),
        gr.Slider(minimum=0.0, maximum=5.0, step=0.1, value=5.0,
                  label="Priority for HSV Histogram (Slow)"),
        gr.Slider(minimum=0.0, maximum=5.0, step=0.1, value=0.2,
                  label="Priority for LBP Histogram (Normal)"),
        gr.Slider(minimum=0.0, maximum=5.0, step=0.1, value=0.2,
                  label="Priority for GLCM Features (Very Slow)"),
        gr.Slider(minimum=0.0, maximum=5.0, step=0.1, value=0.2,
                  label="Priority for HOG Features (Normal)")
    ],
    outputs=[
        gr.Image(type="numpy", label="Mosaic Image", format="png"),
        gr.Textbox(label="Performance Metrics")
    ],
    title="Photomosaic Generator",
    description=(
       "Turn your image into a mesmerizing photomosaic, crafted from carefully selected 150×150 tiles. Each block is replaced with the best-matching tile, preserving the essence of your original picture. Customize the look by adjusting feature priorities and output scale. The final mosaic captures intricate details while maintaining artistic harmony, creating a unique visual story."
    ),
    examples=[
        # For each sample image, all examples use an output scale of 0.1.
        # -- SAMPLE (1).png --
        [
            "samples/sample (1).png",
            20,
            0.1,   # Output Scale set to 0.1
            5.0,   # Priority for Average Color only
            0.0,   # HSV
            0.0,   # LBP
            0.0,   # GLCM
            0.0    # HOG
        ],
        [
            "samples/sample (1).png",
            20,
            0.1,   # Output Scale set to 0.1
            0.0,   # Priority for Average Color
            5.0,   # Priority for HSV only
            0.0,   # LBP
            0.0,   # GLCM
            0.0    # HOG
        ],
        [
            "samples/sample (1).png",
            20,
            0.1,   # Output Scale set to 0.1
            3.5,   # Combination: avg=3.5, hsv=5, rest=0.2
            5.0,
            0.2,
            0.2,
            0.2
        ],
        # -- SAMPLE (2).jpg --
        [
            "samples/sample (2).jpg",
            20,
            0.1,
            5.0,
            0.0,
            0.0,
            0.0,
            0.0
        ],
        [
            "samples/sample (2).jpg",
            20,
            0.1,
            0.0,
            5.0,
            0.0,
            0.0,
            0.0
        ],
        [
            "samples/sample (2).jpg",
            20,
            0.1,
            3.5,
            5.0,
            0.2,
            0.2,
            0.2
        ],
        # -- SAMPLE (3).jpg --
        [
            "samples/sample (3).jpg",
            20,
            0.1,
            5.0,
            0.0,
            0.0,
            0.0,
            0.0
        ],
        [
            "samples/sample (3).jpg",
            20,
            0.1,
            0.0,
            5.0,
            0.0,
            0.0,
            0.0
        ],
        [
            "samples/sample (3).jpg",
            20,
            0.1,
            3.5,
            5.0,
            0.2,
            0.2,
            0.2
        ],
        # -- SAMPLE (4).webp --
        [
            "samples/sample (4).webp",
            20,
            0.1,
            5.0,
            0.0,
            0.0,
            0.0,
            0.0
        ],
        [
            "samples/sample (4).webp",
            20,
            0.1,
            0.0,
            5.0,
            0.0,
            0.0,
            0.0
        ],
        [
            "samples/sample (4).webp",
            20,
            0.1,
            3.5,
            5.0,
            0.2,
            0.2,
            0.2
        ],
        # -- SAMPLE (5).jpg --
        [
            "samples/sample (5).jpg",
            20,
            0.1,
            5.0,
            0.0,
            0.0,
            0.0,
            0.0
        ],
        [
            "samples/sample (5).jpg",
            20,
            0.1,
            0.0,
            5.0,
            0.0,
            0.0,
            0.0
        ],
        [
            "samples/sample (5).jpg",
            20,
            0.1,
            3.5,
            5.0,
            0.2,
            0.2,
            0.2
        ]
    ]
)

if __name__ == "__main__":
    iface.launch()