Spaces:
Sleeping
Sleeping
File size: 16,812 Bytes
4e4d03e 0e9a884 4e4d03e 1b4e3b5 4e4d03e 1b4e3b5 4e4d03e 1b4e3b5 4e4d03e 1b4e3b5 4e4d03e 1b4e3b5 4e4d03e 1b4e3b5 4e4d03e 1b4e3b5 4e4d03e 1b4e3b5 4e4d03e 1b4e3b5 4e4d03e 1b4e3b5 4e4d03e 1b4e3b5 4e4d03e 1b4e3b5 4e4d03e 1b4e3b5 4e4d03e 1b4e3b5 4e4d03e 1b4e3b5 4e4d03e 1b4e3b5 4e4d03e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 |
from huggingface_hub import hf_hub_download, login
import cv2
import numpy as np
import pickle # for loading tile features and raw images
from skimage.feature import local_binary_pattern, graycomatrix, graycoprops, hog
from skimage.metrics import structural_similarity as ssim, peak_signal_noise_ratio as psnr
from PIL import Image
import gradio as gr
import time
import os
# ---------------------------------------------------------------------
# Feature Extraction Functions
# ---------------------------------------------------------------------
def get_average_color(image):
"""Compute the average color (per channel) of the image (BGR format)."""
return np.mean(image, axis=(0, 1))
def get_color_histogram(image, bins=(8, 8, 8)):
"""Compute a normalized color histogram in HSV color space."""
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
hist = cv2.calcHist([hsv], [0, 1, 2], None, bins, [0, 180, 0, 256, 0, 256])
cv2.normalize(hist, hist)
return hist.flatten()
def get_lbp_histogram(image, numPoints=24, radius=8, bins=59):
"""Compute a histogram of Local Binary Patterns (LBP) from the grayscale image."""
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
lbp = local_binary_pattern(gray, numPoints, radius, method="uniform")
hist, _ = np.histogram(lbp.ravel(), bins=bins, range=(0, bins))
hist = hist.astype("float")
hist /= (hist.sum() + 1e-7)
return hist
def get_glcm_features(image, distances=[1, 2, 4], angles=[0, np.pi/4, np.pi/2, 3*np.pi/4],
properties=('contrast', 'dissimilarity', 'homogeneity', 'energy', 'correlation', 'ASM')):
"""
Compute GLCM (Gray Level Co-occurrence Matrix) features (Haralick features).
Returns a concatenated feature vector of all requested properties, for each distance & angle.
"""
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
glcm = graycomatrix(gray, distances=distances, angles=angles, levels=256,
symmetric=True, normed=True)
feats = []
for prop in properties:
vals = graycoprops(glcm, prop)
feats.append(vals.ravel())
return np.hstack(feats)
def get_hog_features(image, orientations=9, pixels_per_cell=(8, 8),
cells_per_block=(2, 2), block_norm='L2-Hys'):
"""
Compute Histogram of Oriented Gradients (HOG) from the grayscale image.
The image is forcibly resized to 16×16 to avoid errors.
"""
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
return hog(gray, orientations=orientations, pixels_per_cell=pixels_per_cell,
cells_per_block=(2, 2), block_norm=block_norm)
def get_combined_features(image):
"""
Compute and combine all features in the following order:
- Average Color (3)
- HSV Color Histogram (512)
- LBP Histogram (59)
- GLCM Features (72)
- HOG Features (36)
Total length = 682.
"""
avg_color = get_average_color(image)
color_hist = get_color_histogram(image)
lbp_hist = get_lbp_histogram(image)
glcm_feats = get_glcm_features(image)
hog_feats = get_hog_features(cv2.resize(image, (16, 16), interpolation=cv2.INTER_LINEAR))
return np.concatenate([avg_color, color_hist, lbp_hist, glcm_feats, hog_feats])
# ---------------------------------------------------------------------
# Feature Dictionary and Order
# ---------------------------------------------------------------------
FEATURES = {
"Average Color (Color, Fast)": {
"func": get_average_color,
"range": (0, 3)
},
"HSV Histogram (Color Dist., Slow)": {
"func": get_color_histogram,
"range": (3, 515)
},
"LBP Histogram (Texture, Normal)": {
"func": get_lbp_histogram,
"range": (515, 574)
},
"GLCM Features (Texture Stats, Very Slow)": {
"func": get_glcm_features,
"range": (574, 646)
},
"HOG Features (Edges/Shapes, Normal)": {
"func": lambda image: get_hog_features(cv2.resize(image, (16, 16), interpolation=cv2.INTER_LINEAR)),
"range": (646, 682)
}
}
FEATURE_ORDER = list(FEATURES.keys())
def get_selected_features(image, selected_features):
"""
Compute and combine only the selected features from the image.
Uses the canonical order defined in FEATURE_ORDER.
"""
feats = []
for feat in FEATURE_ORDER:
if feat in selected_features:
feats.append(FEATURES[feat]["func"](image))
if not feats:
return np.array([], dtype=np.float32)
return np.concatenate(feats).astype(np.float32)
# ---------------------------------------------------------------------
# Load Precomputed Tile Features & Raw Images
# ---------------------------------------------------------------------
try:
with open("tile_features.pkl", "rb") as f:
data = pickle.load(f)
tile_features = data["features"] # shape: (num_tiles, 682)
tile_paths = data["paths"] # e.g. "image_dataset/21837.jpg"
print(f"Loaded {len(tile_paths)} tile features from tile_features.pkl")
except Exception as e:
print("Error loading tile features from local file:", e)
tile_features = None
tile_paths = None
try:
with open("tile_images_raw.pkl", "rb") as f:
raw_images_dict = pickle.load(f)
print(f"Loaded raw images dictionary with {len(raw_images_dict)} entries.")
except Exception as e:
print("Error loading raw images dictionary:", e)
raw_images_dict = {}
def get_tile_image(tile_path):
"""
Given a tile image path from the features pickle (e.g. "image_dataset\\21837.jpg"),
decode it from the raw_images_dict. Expects tile to be ~150×150.
"""
fixed_path = tile_path.replace("\\", "/").strip()
if fixed_path in raw_images_dict:
raw_bytes = raw_images_dict[fixed_path]
np_arr = np.frombuffer(raw_bytes, np.uint8)
img = cv2.imdecode(np_arr, cv2.IMREAD_COLOR)
if img is None:
print(f"cv2.imdecode failed for: {fixed_path}")
return img
else:
print(f"Tile image '{fixed_path}' not found.")
return None
# ---------------------------------------------------------------------
# Mosaic Generation Function (No tile scaling, with Output Scale)
# ---------------------------------------------------------------------
def mosaic_generator(user_img, block_size, output_scale=1.0,
weight_avg_color=1.0, weight_hsv_hist=1.0,
weight_lbp=1.0, weight_glcm=1.0, weight_hog=1.0):
"""
Create a photomosaic using 150×150 tiles with no tile scaling.
For each block (block_size x block_size) in the cropped user image, compute the selected features
and perform a weighted linear search over the tile_features subset.
Each block is replaced by one 150×150 tile, so the final mosaic dimensions are:
(grid_rows * 150) x (grid_cols * 150).
The final mosaic is optionally rescaled by output_scale (range: 0.1 to 1.0; default 1.0).
Performance metrics (MSE, SSIM, PSNR) compare the original cropped image with a downsized version
of the mosaic.
"""
start_time = time.time()
# Build a dictionary of feature weights.
feature_weights = {
"Average Color (Color, Fast)": weight_avg_color,
"HSV Histogram (Color Dist., Slow)": weight_hsv_hist,
"LBP Histogram (Texture, Normal)": weight_lbp,
"GLCM Features (Texture Stats, Very Slow)": weight_glcm,
"HOG Features (Edges/Shapes, Normal)": weight_hog
}
effective_features = [f for f in FEATURE_ORDER if feature_weights.get(f, 0) > 0]
if not effective_features:
return "Error: All features have weight = 0. Please enable at least one feature.", ""
# Build the tile_feature subset for only the selected features.
selected_indices = []
weights_list = []
for feat in FEATURE_ORDER:
if feat in effective_features:
start_idx, end_idx = FEATURES[feat]["range"]
selected_indices.extend(range(start_idx, end_idx))
w = feature_weights[feat]
weights_list.extend([w] * (end_idx - start_idx))
weights_vector = np.array(weights_list, dtype=np.float32)
if tile_features is None or tile_paths is None:
return "Error: Tile features are not loaded or incompatible.", ""
tile_subset = tile_features[:, selected_indices].astype(np.float32)
# Crop the user image to multiples of block_size.
user_img_bgr = cv2.cvtColor(np.array(user_img), cv2.COLOR_RGB2BGR)
h, w, _ = user_img_bgr.shape
new_h = (h // block_size) * block_size
new_w = (w // block_size) * block_size
user_img_bgr = user_img_bgr[:new_h, :new_w]
grid_rows = new_h // block_size
grid_cols = new_w // block_size
# Save a copy in RGB for final metrics.
original_cropped_rgb = cv2.cvtColor(user_img_bgr, cv2.COLOR_BGR2RGB)
mosaic_grid = []
progress = gr.Progress() # Row-by-row progress bar
for row in range(grid_rows):
row_tiles = []
for col in range(grid_cols):
y = row * block_size
x = col * block_size
block = user_img_bgr[y:y+block_size, x:x+block_size]
# Compute only the selected features from this block.
query_feats = get_selected_features(block, effective_features)
if query_feats.size == 0:
best_tile = np.zeros((150, 150, 3), dtype=np.uint8)
row_tiles.append(best_tile)
continue
query_feats = query_feats.reshape(1, -1)
query_weighted = query_feats * weights_vector
tile_subset_weighted = tile_subset * weights_vector
dists = np.linalg.norm(tile_subset_weighted - query_weighted, axis=1)
best_idx = np.argmin(dists)
best_tile_path = tile_paths[best_idx]
best_tile = get_tile_image(best_tile_path)
if best_tile is None:
best_tile = np.zeros((150, 150, 3), dtype=np.uint8)
else:
if best_tile.shape[:2] != (150, 150):
best_tile = cv2.resize(best_tile, (150, 150), interpolation=cv2.INTER_AREA)
row_tiles.append(best_tile)
row_image = np.hstack(row_tiles)
mosaic_grid.append(row_image)
progress((row + 1) / grid_rows, desc=f"Processed row {row+1}/{grid_rows}")
mosaic_bgr = np.vstack(mosaic_grid)
mosaic_rgb = cv2.cvtColor(mosaic_bgr, cv2.COLOR_BGR2RGB)
# Rescale mosaic output if output_scale is not 1.0.
if output_scale != 1.0:
out_w = int(mosaic_rgb.shape[1] * output_scale)
out_h = int(mosaic_rgb.shape[0] * output_scale)
mosaic_rgb = cv2.resize(mosaic_rgb, (out_w, out_h), interpolation=cv2.INTER_LINEAR)
end_time = time.time()
processing_time = end_time - start_time
total_blocks = grid_rows * grid_cols
# For performance metrics, downsize the mosaic to match original cropped dimensions.
orig_h, orig_w, _ = original_cropped_rgb.shape
mosaic_resized_for_metrics = cv2.resize(mosaic_rgb, (orig_w, orig_h), interpolation=cv2.INTER_AREA)
mse_val = np.mean((original_cropped_rgb.astype(np.float32) - mosaic_resized_for_metrics.astype(np.float32)) ** 2)
ssim_val = ssim(original_cropped_rgb, mosaic_resized_for_metrics, channel_axis=-1, win_size=3)
psnr_val = psnr(original_cropped_rgb, mosaic_resized_for_metrics)
metrics = (
f"Processing Time: {processing_time:.2f} seconds\n"
f"Grid Dimensions: {grid_rows} rows x {grid_cols} columns\n"
f"Total Blocks Processed: {total_blocks}\n"
f"MSE: {mse_val:.2f}\n"
f"SSIM: {ssim_val:.4f}\n"
f"PSNR: {psnr_val:.2f} dB\n"
)
return mosaic_rgb, metrics
# ---------------------------------------------------------------------
# Gradio Interface
# ---------------------------------------------------------------------
iface = gr.Interface(
fn=mosaic_generator,
cache_examples=True,
inputs=[
gr.Image(type="pil", label="Upload Your Image"),
gr.Slider(minimum=1, maximum=32, step=1, value=20,
label="Block Size (px) for Feature Extraction"),
gr.Slider(minimum=0.1, maximum=1.0, step=0.1, value=1.0,
label="Output Scale (0.1 to 1.0)"),
# Feature priority sliders:
gr.Slider(minimum=0.0, maximum=5.0, step=0.1, value=3.5,
label="Priority for Average Color (Fast)"),
gr.Slider(minimum=0.0, maximum=5.0, step=0.1, value=5.0,
label="Priority for HSV Histogram (Slow)"),
gr.Slider(minimum=0.0, maximum=5.0, step=0.1, value=0.2,
label="Priority for LBP Histogram (Normal)"),
gr.Slider(minimum=0.0, maximum=5.0, step=0.1, value=0.2,
label="Priority for GLCM Features (Very Slow)"),
gr.Slider(minimum=0.0, maximum=5.0, step=0.1, value=0.2,
label="Priority for HOG Features (Normal)")
],
outputs=[
gr.Image(type="numpy", label="Mosaic Image", format="png"),
gr.Textbox(label="Performance Metrics")
],
title="Photomosaic Generator",
description=(
"Turn your image into a mesmerizing photomosaic, crafted from carefully selected 150×150 tiles. Each block is replaced with the best-matching tile, preserving the essence of your original picture. Customize the look by adjusting feature priorities and output scale. The final mosaic captures intricate details while maintaining artistic harmony, creating a unique visual story."
),
examples=[
# For each sample image, all examples use an output scale of 0.1.
# -- SAMPLE (1).png --
[
"samples/sample (1).png",
20,
0.1, # Output Scale set to 0.1
5.0, # Priority for Average Color only
0.0, # HSV
0.0, # LBP
0.0, # GLCM
0.0 # HOG
],
[
"samples/sample (1).png",
20,
0.1, # Output Scale set to 0.1
0.0, # Priority for Average Color
5.0, # Priority for HSV only
0.0, # LBP
0.0, # GLCM
0.0 # HOG
],
[
"samples/sample (1).png",
20,
0.1, # Output Scale set to 0.1
3.5, # Combination: avg=3.5, hsv=5, rest=0.2
5.0,
0.2,
0.2,
0.2
],
# -- SAMPLE (2).jpg --
[
"samples/sample (2).jpg",
20,
0.1,
5.0,
0.0,
0.0,
0.0,
0.0
],
[
"samples/sample (2).jpg",
20,
0.1,
0.0,
5.0,
0.0,
0.0,
0.0
],
[
"samples/sample (2).jpg",
20,
0.1,
3.5,
5.0,
0.2,
0.2,
0.2
],
# -- SAMPLE (3).jpg --
[
"samples/sample (3).jpg",
20,
0.1,
5.0,
0.0,
0.0,
0.0,
0.0
],
[
"samples/sample (3).jpg",
20,
0.1,
0.0,
5.0,
0.0,
0.0,
0.0
],
[
"samples/sample (3).jpg",
20,
0.1,
3.5,
5.0,
0.2,
0.2,
0.2
],
# -- SAMPLE (4).webp --
[
"samples/sample (4).webp",
20,
0.1,
5.0,
0.0,
0.0,
0.0,
0.0
],
[
"samples/sample (4).webp",
20,
0.1,
0.0,
5.0,
0.0,
0.0,
0.0
],
[
"samples/sample (4).webp",
20,
0.1,
3.5,
5.0,
0.2,
0.2,
0.2
],
# -- SAMPLE (5).jpg --
[
"samples/sample (5).jpg",
20,
0.1,
5.0,
0.0,
0.0,
0.0,
0.0
],
[
"samples/sample (5).jpg",
20,
0.1,
0.0,
5.0,
0.0,
0.0,
0.0
],
[
"samples/sample (5).jpg",
20,
0.1,
3.5,
5.0,
0.2,
0.2,
0.2
]
]
)
if __name__ == "__main__":
iface.launch()
|