Spaces:
Sleeping
Sleeping
File size: 2,132 Bytes
b18a9b9 679d03d b18a9b9 679d03d b18a9b9 0e31147 b18a9b9 679d03d b18a9b9 e5eadd0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
import faiss
import numpy as np
import pandas as pd
from sentence_transformers import SentenceTransformer
import streamlit as st
from streamlit.column_config import LinkColumn
import os
os.environ['KMP_DUPLICATE_LIB_OK']='True'
@st.cache_resource
def load_model():
model = SentenceTransformer("sbintuitions/sarashina-embedding-v1-1b")
return model
@st.cache_resource
def load_title_data():
title_df = pd.read_csv('anlp2025.tsv', names=["pid", "title"], sep="\t")
return title_df
@st.cache_resource
def load_title_embeddings():
npz_comp = np.load("anlp2025.npz")
title_embeddings = npz_comp["arr_0"]
return title_embeddings
def get_retrieval_results(index, input_text, top_k, model, title_df):
query_embeddings = model.encode([input_text])
_, ids = index.search(x=query_embeddings, k=top_k)
retrieved_titles = []
retrieved_pids = []
for id in ids[0]:
retrieved_titles.append(title_df.loc[id, "title"])
retrieved_pids.append(title_df.loc[id, "pid"])
df = pd.DataFrame({
"pid": retrieved_pids,
"paper": retrieved_titles,
"pdf": [f'https://www.anlp.jp/proceedings/annual_meeting/2025/pdf_dir/{pid}.pdf' for pid in retrieved_pids]
})
return df
if __name__ == "__main__":
model = load_model()
title_df = load_title_data()
title_embeddings = load_title_embeddings()
index = faiss.IndexFlatL2(1792)
index.add(title_embeddings)
st.markdown("## NLP2025 論文検索")
st.html(f"大会公式ページは<a href='https://www.anlp.jp/proceedings/annual_meeting/2025/' target='_blank'>こちら</a>")
input_text = st.text_input('query', '', placeholder='')
top_k = st.number_input('top_k', min_value=1, value=10, step=1)
column_config = {
"pdf": LinkColumn(
display_text="🔗"
)
}
if st.button('検索'):
stripped_input_text = input_text.strip()
df = get_retrieval_results(index, stripped_input_text, top_k, model, title_df)
st.dataframe(df, column_config=column_config, width=720)
|