from typing import Tuple import torch from torch.autograd import Function import torch.nn as nn import pointops2_cuda as pointops_cuda class FurthestSampling(Function): @staticmethod def forward(ctx, xyz, offset, new_offset): """ input: xyz: (n, 3), offset: (b), new_offset: (b) output: idx: (m) """ assert xyz.is_contiguous() n, b, n_max = xyz.shape[0], offset.shape[0], offset[0] for i in range(1, b): n_max = max(offset[i] - offset[i - 1], n_max) idx = torch.cuda.IntTensor(new_offset[b - 1].item()).zero_() tmp = torch.cuda.FloatTensor(n).fill_(1e10) pointops_cuda.furthestsampling_cuda(b, n_max, xyz, offset, new_offset, tmp, idx) del tmp return idx furthestsampling = FurthestSampling.apply class KNNQuery(Function): @staticmethod def forward(ctx, nsample, xyz, new_xyz, offset, new_offset): """ input: xyz: (n, 3), new_xyz: (m, 3), offset: (b), new_offset: (b) output: idx: (m, nsample), dist2: (m, nsample) """ if new_xyz is None: new_xyz = xyz assert xyz.is_contiguous() and new_xyz.is_contiguous() m = new_xyz.shape[0] idx = torch.cuda.IntTensor(m, nsample).zero_() dist2 = torch.cuda.FloatTensor(m, nsample).zero_() pointops_cuda.knnquery_cuda( m, nsample, xyz, new_xyz, offset, new_offset, idx, dist2 ) return idx, torch.sqrt(dist2) knnquery = KNNQuery.apply class Grouping(Function): @staticmethod def forward(ctx, input, idx): """ input: input: (n, c), idx : (m, nsample) output: (m, nsample, c) """ assert input.is_contiguous() and idx.is_contiguous() m, nsample, n, c = idx.shape[0], idx.shape[1], input.shape[0], input.shape[1] output = torch.cuda.FloatTensor(m, nsample, c) pointops_cuda.grouping_forward_cuda(m, nsample, c, input, idx, output) ctx.n = n ctx.save_for_backward(idx) return output @staticmethod def backward(ctx, grad_output): """ input: grad_out: (m, c, nsample) output: (n, c), None """ n = ctx.n (idx,) = ctx.saved_tensors m, nsample, c = grad_output.shape grad_input = torch.cuda.FloatTensor(n, c).zero_() pointops_cuda.grouping_backward_cuda( m, nsample, c, grad_output, idx, grad_input ) return grad_input, None grouping = Grouping.apply def queryandgroup(nsample, xyz, new_xyz, feat, idx, offset, new_offset, use_xyz=True): """ input: xyz: (n, 3), new_xyz: (m, 3), feat: (n, c), idx: (m, nsample), offset: (b), new_offset: (b) output: new_feat: (m, c+3, nsample), grouped_idx: (m, nsample) """ assert xyz.is_contiguous() and new_xyz.is_contiguous() and feat.is_contiguous() if new_xyz is None: new_xyz = xyz if idx is None: idx, _ = knnquery(nsample, xyz, new_xyz, offset, new_offset) # (m, nsample) n, m, c = xyz.shape[0], new_xyz.shape[0], feat.shape[1] grouped_xyz = xyz[idx.view(-1).long(), :].view(m, nsample, 3) # (m, nsample, 3) # grouped_xyz = grouping(xyz, idx) # (m, nsample, 3) grouped_xyz -= new_xyz.unsqueeze(1) # (m, nsample, 3) grouped_feat = feat[idx.view(-1).long(), :].view(m, nsample, c) # (m, nsample, c) # grouped_feat = grouping(feat, idx) # (m, nsample, c) if use_xyz: return torch.cat((grouped_xyz, grouped_feat), -1) # (m, nsample, 3+c) else: return grouped_feat class Subtraction(Function): @staticmethod def forward(ctx, input1, input2, idx): """ input: input1: (n, c), input2: (n, c), idx: (n, nsample) output: (n, nsample, c) """ assert input1.is_contiguous() and input2.is_contiguous() n, c = input1.shape nsample = idx.shape[-1] output = torch.cuda.FloatTensor(n, nsample, c).zero_() pointops_cuda.subtraction_forward_cuda( n, nsample, c, input1, input2, idx, output ) ctx.save_for_backward(idx) return output @staticmethod def backward(ctx, grad_output): """ input: grad_out: (n, nsample, c) output: grad_input1: (n, c), grad_input2: (n, c) """ (idx,) = ctx.saved_tensors n, nsample, c = grad_output.shape grad_input1 = torch.cuda.FloatTensor(n, c).zero_() grad_input2 = torch.cuda.FloatTensor(n, c).zero_() pointops_cuda.subtraction_backward_cuda( n, nsample, c, idx, grad_output, grad_input1, grad_input2 ) return grad_input1, grad_input2, None subtraction = Subtraction.apply class Aggregation(Function): @staticmethod def forward(ctx, input, position, weight, idx): """ input: input: (n, c), position: (n, nsample, c), weight : (n, nsample, c'), idx: (n, nsample) output: (n, c) """ assert ( input.is_contiguous() and position.is_contiguous() and weight.is_contiguous() ) n, nsample, c = position.shape w_c = weight.shape[-1] output = torch.cuda.FloatTensor(n, c).zero_() pointops_cuda.aggregation_forward_cuda( n, nsample, c, w_c, input, position, weight, idx, output ) ctx.save_for_backward(input, position, weight, idx) return output @staticmethod def backward(ctx, grad_output): """ input: grad_out: (n, c) output: grad_input: (n, c), grad_position: (n, nsample, c), grad_weight : (n, nsample, c') """ input, position, weight, idx = ctx.saved_tensors n, nsample, c = position.shape w_c = weight.shape[-1] grad_input = torch.cuda.FloatTensor(n, c).zero_() grad_position = torch.cuda.FloatTensor(n, nsample, c).zero_() grad_weight = torch.cuda.FloatTensor(n, nsample, w_c).zero_() pointops_cuda.aggregation_backward_cuda( n, nsample, c, w_c, input, position, weight, idx, grad_output, grad_input, grad_position, grad_weight, ) return grad_input, grad_position, grad_weight, None aggregation = Aggregation.apply def interpolation(xyz, new_xyz, feat, offset, new_offset, k=3): """ input: xyz: (m, 3), new_xyz: (n, 3), feat: (m, c), offset: (b), new_offset: (b) output: (n, c) """ assert xyz.is_contiguous() and new_xyz.is_contiguous() and feat.is_contiguous() idx, dist = knnquery(k, xyz, new_xyz, offset, new_offset) # (n, 3), (n, 3) dist_recip = 1.0 / (dist + 1e-8) # (n, 3) norm = torch.sum(dist_recip, dim=1, keepdim=True) weight = dist_recip / norm # (n, 3) new_feat = torch.cuda.FloatTensor(new_xyz.shape[0], feat.shape[1]).zero_() for i in range(k): new_feat += feat[idx[:, i].long(), :] * weight[:, i].unsqueeze(-1) return new_feat class Interpolation(Function): @staticmethod def forward(ctx, xyz, new_xyz, input, offset, new_offset, k=3): """ input: xyz: (m, 3), new_xyz: (n, 3), input: (m, c), offset: (b), new_offset: (b) output: (n, c) """ assert xyz.is_contiguous() and new_xyz.is_contiguous() and input.is_contiguous() idx, dist = knnquery(k, xyz, new_xyz, offset, new_offset) # (n, k), (n, k) dist_recip = 1.0 / (dist + 1e-8) # (n, k) norm = torch.sum(dist_recip, dim=1, keepdim=True) weight = dist_recip / norm # (n, k) n, c, m = new_xyz.shape[0], input.shape[1], input.shape[0] output = torch.cuda.FloatTensor(n, c).zero_() pointops_cuda.interpolation_forward_cuda(n, c, k, input, idx, weight, output) ctx.m, ctx.k = m, k ctx.save_for_backward(idx, weight) return output @staticmethod def backward(ctx, grad_output): """ input: xyz: (m, 3), new_xyz: (n, 3), input: (m, c), offset: (b), new_offset: (b) output: (n, c) """ m, k = ctx.m, ctx.k idx, weight = ctx.saved_tensors n, c = grad_output.shape grad_input = torch.cuda.FloatTensor(m, c).zero_() pointops_cuda.interpolation_backward_cuda( n, c, k, grad_output, idx, weight, grad_input ) return None, None, grad_input, None, None, None interpolation2 = Interpolation.apply