|
from typing import Tuple |
|
|
|
import torch |
|
from torch.autograd import Function |
|
import torch.nn as nn |
|
|
|
import pointops2_cuda as pointops_cuda |
|
|
|
|
|
class FurthestSampling(Function): |
|
@staticmethod |
|
def forward(ctx, xyz, offset, new_offset): |
|
""" |
|
input: xyz: (n, 3), offset: (b), new_offset: (b) |
|
output: idx: (m) |
|
""" |
|
assert xyz.is_contiguous() |
|
n, b, n_max = xyz.shape[0], offset.shape[0], offset[0] |
|
for i in range(1, b): |
|
n_max = max(offset[i] - offset[i - 1], n_max) |
|
idx = torch.cuda.IntTensor(new_offset[b - 1].item()).zero_() |
|
tmp = torch.cuda.FloatTensor(n).fill_(1e10) |
|
pointops_cuda.furthestsampling_cuda(b, n_max, xyz, offset, new_offset, tmp, idx) |
|
del tmp |
|
return idx |
|
|
|
|
|
furthestsampling = FurthestSampling.apply |
|
|
|
|
|
class KNNQuery(Function): |
|
@staticmethod |
|
def forward(ctx, nsample, xyz, new_xyz, offset, new_offset): |
|
""" |
|
input: xyz: (n, 3), new_xyz: (m, 3), offset: (b), new_offset: (b) |
|
output: idx: (m, nsample), dist2: (m, nsample) |
|
""" |
|
if new_xyz is None: |
|
new_xyz = xyz |
|
assert xyz.is_contiguous() and new_xyz.is_contiguous() |
|
m = new_xyz.shape[0] |
|
idx = torch.cuda.IntTensor(m, nsample).zero_() |
|
dist2 = torch.cuda.FloatTensor(m, nsample).zero_() |
|
pointops_cuda.knnquery_cuda( |
|
m, nsample, xyz, new_xyz, offset, new_offset, idx, dist2 |
|
) |
|
return idx, torch.sqrt(dist2) |
|
|
|
|
|
knnquery = KNNQuery.apply |
|
|
|
|
|
class Grouping(Function): |
|
@staticmethod |
|
def forward(ctx, input, idx): |
|
""" |
|
input: input: (n, c), idx : (m, nsample) |
|
output: (m, nsample, c) |
|
""" |
|
assert input.is_contiguous() and idx.is_contiguous() |
|
m, nsample, n, c = idx.shape[0], idx.shape[1], input.shape[0], input.shape[1] |
|
output = torch.cuda.FloatTensor(m, nsample, c) |
|
pointops_cuda.grouping_forward_cuda(m, nsample, c, input, idx, output) |
|
ctx.n = n |
|
ctx.save_for_backward(idx) |
|
return output |
|
|
|
@staticmethod |
|
def backward(ctx, grad_output): |
|
""" |
|
input: grad_out: (m, c, nsample) |
|
output: (n, c), None |
|
""" |
|
n = ctx.n |
|
(idx,) = ctx.saved_tensors |
|
m, nsample, c = grad_output.shape |
|
grad_input = torch.cuda.FloatTensor(n, c).zero_() |
|
pointops_cuda.grouping_backward_cuda( |
|
m, nsample, c, grad_output, idx, grad_input |
|
) |
|
return grad_input, None |
|
|
|
|
|
grouping = Grouping.apply |
|
|
|
|
|
def queryandgroup( |
|
nsample, xyz, new_xyz, feat, idx, offset, new_offset, use_xyz=True, relative=True |
|
): |
|
""" |
|
input: xyz: (n, 3), new_xyz: (m, 3), feat: (n, c), idx: (m, nsample), offset: (b), new_offset: (b) |
|
output: new_feat: (m, c+3, nsample), grouped_idx: (m, nsample) |
|
""" |
|
assert xyz.is_contiguous() and new_xyz.is_contiguous() and feat.is_contiguous() |
|
if new_xyz is None: |
|
new_xyz = xyz |
|
if idx is None: |
|
idx, _ = knnquery(nsample, xyz, new_xyz, offset, new_offset) |
|
|
|
n, m, c = xyz.shape[0], new_xyz.shape[0], feat.shape[1] |
|
grouped_xyz = xyz[idx.view(-1).long(), :].view(m, nsample, 3) |
|
|
|
if relative: |
|
grouped_xyz -= new_xyz.unsqueeze(1) |
|
grouped_feat = feat[idx.view(-1).long(), :].view(m, nsample, c) |
|
|
|
|
|
if use_xyz: |
|
return torch.cat((grouped_xyz, grouped_feat), -1) |
|
else: |
|
return grouped_feat |
|
|
|
|
|
class Subtraction(Function): |
|
@staticmethod |
|
def forward(ctx, input1, input2, idx): |
|
""" |
|
input: input1: (n, c), input2: (n, c), idx: (n, nsample) |
|
output: (n, nsample, c) |
|
""" |
|
assert input1.is_contiguous() and input2.is_contiguous() |
|
n, c = input1.shape |
|
nsample = idx.shape[-1] |
|
output = torch.cuda.FloatTensor(n, nsample, c).zero_() |
|
pointops_cuda.subtraction_forward_cuda( |
|
n, nsample, c, input1, input2, idx, output |
|
) |
|
ctx.save_for_backward(idx) |
|
return output |
|
|
|
@staticmethod |
|
def backward(ctx, grad_output): |
|
""" |
|
input: grad_out: (n, nsample, c) |
|
output: grad_input1: (n, c), grad_input2: (n, c) |
|
""" |
|
(idx,) = ctx.saved_tensors |
|
n, nsample, c = grad_output.shape |
|
grad_input1 = torch.cuda.FloatTensor(n, c).zero_() |
|
grad_input2 = torch.cuda.FloatTensor(n, c).zero_() |
|
pointops_cuda.subtraction_backward_cuda( |
|
n, nsample, c, idx, grad_output, grad_input1, grad_input2 |
|
) |
|
return grad_input1, grad_input2, None |
|
|
|
|
|
subtraction = Subtraction.apply |
|
|
|
|
|
class Aggregation(Function): |
|
@staticmethod |
|
def forward(ctx, input, position, weight, idx): |
|
""" |
|
input: input: (n, c), position: (n, nsample, c), weight : (n, nsample, c'), idx: (n, nsample) |
|
output: (n, c) |
|
""" |
|
assert ( |
|
input.is_contiguous() |
|
and position.is_contiguous() |
|
and weight.is_contiguous() |
|
) |
|
n, nsample, c = position.shape |
|
w_c = weight.shape[-1] |
|
output = torch.cuda.FloatTensor(n, c).zero_() |
|
pointops_cuda.aggregation_forward_cuda( |
|
n, nsample, c, w_c, input, position, weight, idx, output |
|
) |
|
ctx.save_for_backward(input, position, weight, idx) |
|
return output |
|
|
|
@staticmethod |
|
def backward(ctx, grad_output): |
|
""" |
|
input: grad_out: (n, c) |
|
output: grad_input: (n, c), grad_position: (n, nsample, c), grad_weight : (n, nsample, c') |
|
""" |
|
input, position, weight, idx = ctx.saved_tensors |
|
n, nsample, c = position.shape |
|
w_c = weight.shape[-1] |
|
grad_input = torch.cuda.FloatTensor(n, c).zero_() |
|
grad_position = torch.cuda.FloatTensor(n, nsample, c).zero_() |
|
grad_weight = torch.cuda.FloatTensor(n, nsample, w_c).zero_() |
|
pointops_cuda.aggregation_backward_cuda( |
|
n, |
|
nsample, |
|
c, |
|
w_c, |
|
input, |
|
position, |
|
weight, |
|
idx, |
|
grad_output, |
|
grad_input, |
|
grad_position, |
|
grad_weight, |
|
) |
|
return grad_input, grad_position, grad_weight, None |
|
|
|
|
|
aggregation = Aggregation.apply |
|
|
|
|
|
def interpolation(xyz, new_xyz, feat, offset, new_offset, k=3): |
|
""" |
|
input: xyz: (m, 3), new_xyz: (n, 3), feat: (m, c), offset: (b), new_offset: (b) |
|
output: (n, c) |
|
""" |
|
assert xyz.is_contiguous() and new_xyz.is_contiguous() and feat.is_contiguous() |
|
idx, dist = knnquery(k, xyz, new_xyz, offset, new_offset) |
|
dist_recip = 1.0 / (dist + 1e-8) |
|
norm = torch.sum(dist_recip, dim=1, keepdim=True) |
|
weight = dist_recip / norm |
|
|
|
new_feat = torch.cuda.FloatTensor(new_xyz.shape[0], feat.shape[1]).zero_() |
|
for i in range(k): |
|
new_feat += feat[idx[:, i].long(), :] * weight[:, i].unsqueeze(-1) |
|
return new_feat |
|
|
|
|
|
class Interpolation(Function): |
|
@staticmethod |
|
def forward(ctx, xyz, new_xyz, input, offset, new_offset, k=3): |
|
""" |
|
input: xyz: (m, 3), new_xyz: (n, 3), input: (m, c), offset: (b), new_offset: (b) |
|
output: (n, c) |
|
""" |
|
assert xyz.is_contiguous() and new_xyz.is_contiguous() and input.is_contiguous() |
|
idx, dist = knnquery(k, xyz, new_xyz, offset, new_offset) |
|
dist_recip = 1.0 / (dist + 1e-8) |
|
norm = torch.sum(dist_recip, dim=1, keepdim=True) |
|
weight = dist_recip / norm |
|
|
|
n, c, m = new_xyz.shape[0], input.shape[1], input.shape[0] |
|
output = torch.cuda.FloatTensor(n, c).zero_() |
|
pointops_cuda.interpolation_forward_cuda(n, c, k, input, idx, weight, output) |
|
ctx.m, ctx.k = m, k |
|
ctx.save_for_backward(idx, weight) |
|
return output |
|
|
|
@staticmethod |
|
def backward(ctx, grad_output): |
|
""" |
|
input: xyz: (m, 3), new_xyz: (n, 3), input: (m, c), offset: (b), new_offset: (b) |
|
output: (n, c) |
|
""" |
|
m, k = ctx.m, ctx.k |
|
idx, weight = ctx.saved_tensors |
|
n, c = grad_output.shape |
|
grad_input = torch.cuda.FloatTensor(m, c).zero_() |
|
pointops_cuda.interpolation_backward_cuda( |
|
n, c, k, grad_output, idx, weight, grad_input |
|
) |
|
return None, None, grad_input, None, None, None |
|
|
|
|
|
interpolation2 = Interpolation.apply |
|
|