LSM / app.py
kairunwen's picture
Update app.py
230b87b
import os, subprocess, shlex, sys, gc
import time
import torch
import numpy as np
import shutil
import argparse
import gradio as gr
import uuid
import spaces
from huggingface_hub import snapshot_download
#
subprocess.run(shlex.split("pip install wheel/torch_scatter-2.1.2+pt21cu121-cp310-cp310-linux_x86_64.whl"))
subprocess.run(shlex.split("pip install wheel/flash_attn-2.6.3+cu123torch2.1cxx11abiFALSE-cp310-cp310-linux_x86_64.whl"))
subprocess.run(shlex.split("pip install wheel/diff_gaussian_rasterization-0.0.0-cp310-cp310-linux_x86_64.whl"))
subprocess.run(shlex.split("pip install wheel/simple_knn-0.0.0-cp310-cp310-linux_x86_64.whl"))
subprocess.run(shlex.split("pip install wheel/curope-0.0.0-cp310-cp310-linux_x86_64.whl"))
subprocess.run(shlex.split("pip install wheel/pointops-1.0-cp310-cp310-linux_x86_64.whl"))
from src.utils.visualization_utils import render_video_from_file
from src.model import LSM_MASt3R
# Download the model checkpoint from Hugging Face Hub
repo_id = "Journey9ni/LSM"
remote_dir = "checkpoints/pretrained_models"
local_dir = "checkpoints/pretrained_model"
model_path_map = {
"MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric.pth": "MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric.pth",
"checkpoint-40.pth":"checkpoint-40.pth",
"demo_e200.ckpt":"lang_seg.ckpt"
}
os.makedirs(local_dir, exist_ok=True)
# download remote repo
snapshot_download(repo_id=repo_id, local_dir='./')
# rename the files
for remote_name, local_name in model_path_map.items():
os.rename(os.path.join(remote_dir, remote_name), os.path.join(local_dir, local_name))
# load the model
model_path = "checkpoints/pretrained_model/checkpoint-40.pth"
model = LSM_MASt3R.from_pretrained(model_path, device='cuda')
model = model.eval()
@spaces.GPU(duration=80)
def process(inputfiles, input_path=None):
# Create a unique cache directory
cache_dir = os.path.join('outputs', str(uuid.uuid4()))
os.makedirs(cache_dir, exist_ok=True)
if input_path is not None:
imgs_path = './assets/examples/' + input_path
imgs_names = sorted(os.listdir(imgs_path))
inputfiles = []
for imgs_name in imgs_names:
file_path = os.path.join(imgs_path, imgs_name)
print(file_path)
inputfiles.append(file_path)
print(inputfiles)
filelist = inputfiles
if len(filelist) != 2:
gr.Warning("Please select 2 images")
shutil.rmtree(cache_dir) # Clean up cache directory
return None, None, None, None, None, None
ply_path = os.path.join(cache_dir, 'gaussians.ply')
# render_video_from_file(filelist, model, output_path=cache_dir, resolution=224)
render_video_from_file(filelist, model, output_path=cache_dir, resolution=512)
rgb_video_path = os.path.join(cache_dir, 'moved', 'output_images_video.mp4')
depth_video_path = os.path.join(cache_dir, 'moved', 'output_depth_video.mp4')
feature_video_path = os.path.join(cache_dir, 'moved', 'output_fmap_video.mp4')
return filelist, rgb_video_path, depth_video_path, feature_video_path, ply_path, ply_path
_TITLE = 'LargeSpatialModel'
_DESCRIPTION = '''
<div style="display: flex; justify-content: center; align-items: center;">
<div style="width: 100%; text-align: center; font-size: 30px;">
<strong>Large Spatial Model: End-to-end Unposed Images to Semantic 3D</strong>
</div>
</div>
<p></p>
<div align="center">
<a style="display:inline-block" href="https://arxiv.org/abs/2410.18956"><img src="https://img.shields.io/badge/ArXiv-2410.18956-b31b1b?logo=arxiv" alt='arxiv'></a>&nbsp;
<a style="display:inline-block" href="https://largespatialmodel.github.io/"><img src='https://img.shields.io/badge/Project_Page-ff7512?logo=lightning'></a>&nbsp;
<a title="Social" href="https://x.com/WayneINR" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://www.obukhov.ai/img/badges/badge-social.svg" alt="social">
</a>
</div>
<p></p>
* Official demo of: [LargeSpatialModel: End-to-end Unposed Images to Semantic 3D](https://largespatialmodel.github.io/).
* Examples for direct viewing: you can simply click the examples (in the bottom of the page), to quickly view the results on representative data.
'''
block = gr.Blocks().queue()
with block:
gr.Markdown(_DESCRIPTION)
with gr.Column(variant="panel"):
with gr.Tab("Input"):
with gr.Row():
with gr.Column(scale=1):
inputfiles = gr.File(file_count="multiple", label="Load Images")
input_path = gr.Textbox(visible=False, label="example_path")
with gr.Column(scale=1):
image_gallery = gr.Gallery(
label="Gallery",
show_label=False,
elem_id="gallery",
columns=[2],
height=300, # Fixed height
object_fit="cover" # Ensure images fill the space
)
button_gen = gr.Button("Start Reconstruction", elem_id="button_gen")
processing_msg = gr.Markdown("Processing...", visible=False, elem_id="processing_msg")
with gr.Column(variant="panel"):
with gr.Tab("Output"):
with gr.Row():
with gr.Column(scale=1):
rgb_video = gr.Video(label="RGB Video", autoplay=True)
with gr.Column(scale=1):
feature_video = gr.Video(label="Feature Video", autoplay=True)
with gr.Column(scale=1):
depth_video = gr.Video(label="Depth Video", autoplay=True)
with gr.Row():
with gr.Group():
output_model = gr.Model3D(
label="3D Dense Model under Gaussian Splats Formats, need more time to visualize",
interactive=False,
camera_position=[0.5, 0.5, 1], # Slight offset for better model viewing
height=600,
)
gr.Markdown(
"""
<div class="model-description">
&nbsp;&nbsp;Use the left mouse button to rotate, the scroll wheel to zoom, and the right mouse button to move.
</div>
"""
)
with gr.Row():
output_file = gr.File(label="PLY File")
examples = gr.Examples(
examples=[
"sofa",
],
inputs=[input_path],
outputs=[image_gallery, rgb_video, depth_video, feature_video, output_model, output_file],
fn=lambda x: process(inputfiles=None, input_path=x),
cache_examples=True,
label="Examples"
)
button_gen.click(
process,
inputs=[inputfiles],
outputs=[image_gallery, rgb_video, depth_video, feature_video, output_model, output_file],
)
block.launch(server_name="0.0.0.0", share=False)