File size: 18,056 Bytes
57746f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
import types
import time
import random
import clip
import torch
import torch.nn as nn
import torchvision.transforms as transforms

from argparse import ArgumentParser

import pytorch_lightning as pl

from encoding.models import get_segmentation_model
from encoding.nn import SegmentationLosses

from encoding.utils import batch_pix_accuracy, batch_intersection_union

# add mixed precision
import torch.cuda.amp as amp
import numpy as np
from encoding.utils.metrics import SegmentationMetric

# get fewshot dataloader
from fewshot_data.model.hsnet import HypercorrSqueezeNetwork
from fewshot_data.common.logger import Logger, AverageMeter
from fewshot_data.common.evaluation import Evaluator
from fewshot_data.common import utils
from fewshot_data.data.dataset import FSSDataset
        
class Fewshot_args:
    datapath = 'fewshot_data/Datasets_HSN'
    benchmark = 'pascal'
    logpath = ''
    nworker = 8
    bsz = 20
    fold = 0
    

class LSegmentationModuleZS(pl.LightningModule):
    def __init__(self, data_path, dataset, batch_size, base_lr, max_epochs, **kwargs):
        super().__init__()

        self.batch_size = batch_size 
        self.base_lr = base_lr / 16 * batch_size
        self.lr = self.base_lr

        self.epochs = max_epochs
        self.other_kwargs = kwargs
        self.enabled = False #True mixed precision will make things complicated and leading to NAN error
        self.scaler = amp.GradScaler(enabled=self.enabled)
        # for whether fix the encoder or not
        self.fixed_encoder = True if kwargs["use_pretrained"] in ['clip_fixed'] else False

        # fewshot hyperparameters
        self.cross_entropy_loss = nn.CrossEntropyLoss()
        self.args = self.get_fewshot_args()
        if data_path:
            self.args.datapath = data_path
        self.args.logpath = self.other_kwargs["logpath"]
        self.args.benchmark = dataset
        self.args.bsz = self.batch_size
        self.args.fold = self.other_kwargs["fold"]
        self.args.nshot =  self.other_kwargs["nshot"]
        self.args.finetune_mode = self.other_kwargs["finetune_mode"]
        Logger.initialize(self.args, training=True)
        Evaluator.initialize()
        if kwargs["backbone"] in ["clip_resnet101"]:
            FSSDataset.initialize(img_size=480, datapath=self.args.datapath, use_original_imgsize=False, imagenet_norm=True)
        else:
            FSSDataset.initialize(img_size=480, datapath=self.args.datapath, use_original_imgsize=False)
        self.best_val_miou = float('-inf')
        self.num_classes = 2
        self.labels = ['others', '']

        self.fewshot_trn_loss = 100
        self.fewshot_trn_miou = 0
        self.fewshot_trn_fb_iou = 0

    def get_fewshot_args(self):
        return Fewshot_args()
        
    def forward(self, x, class_info):
        return self.net(x, class_info)
    

    def training_step(self, batch, batch_nb):
        if self.args.finetune_mode:
            if self.args.nshot == 5:
                bshape = batch['support_imgs'].shape
                img = batch['support_imgs'].view(-1, bshape[2], bshape[3], bshape[4])
                target = batch['support_masks'].view(-1, bshape[3], bshape[4])
                class_info = batch['class_id']
                for i in range(1, 5):
                    class_info = torch.cat([class_info, batch['class_id']])
                with amp.autocast(enabled=self.enabled):
                    out = self(img, class_info)
                    loss = self.criterion(out, target)
                    loss = self.scaler.scale(loss)
                self.log("train_loss", loss)
                # 3. Evaluate prediction
                if self.args.benchmark == 'pascal' and batch['support_ignore_idxs'] is not None:
                    query_ignore_idx = batch['support_ignore_idxs'].view(-1, bshape[3], bshape[4])
                    area_inter, area_union = Evaluator.classify_prediction(out.argmax(dim=1), target, query_ignore_idx)
                else:
                    area_inter, area_union = Evaluator.classify_prediction(out.argmax(dim=1), target)
            else:
                img = batch['support_imgs'].squeeze(1)
                target = batch['support_masks'].squeeze(1)
                class_info = batch['class_id']
                with amp.autocast(enabled=self.enabled):
                    out = self(img, class_info)
                    loss = self.criterion(out, target)
                    loss = self.scaler.scale(loss)
                self.log("train_loss", loss)
                # 3. Evaluate prediction
                if self.args.benchmark == 'pascal' and batch['support_ignore_idxs'] is not None:
                    query_ignore_idx = batch['support_ignore_idxs'].squeeze(1)
                    area_inter, area_union = Evaluator.classify_prediction(out.argmax(dim=1), target, query_ignore_idx)
                else:
                    area_inter, area_union = Evaluator.classify_prediction(out.argmax(dim=1), target)
        else:
            img = torch.cat([batch['support_imgs'].squeeze(1), batch['query_img']], dim=0)
            target = torch.cat([batch['support_masks'].squeeze(1), batch['query_mask']], dim=0)
            class_info=torch.cat([batch['class_id'], batch['class_id']], dim=0)
            with amp.autocast(enabled=self.enabled):
                out = self(img, class_info)
                loss = self.criterion(out, target)
                loss = self.scaler.scale(loss)

            self.log("train_loss", loss)
            # 3. Evaluate prediction
            if self.args.benchmark == 'pascal' and batch['query_ignore_idx'] is not None:
                query_ignore_idx = torch.cat([batch['support_ignore_idxs'].squeeze(1), batch['query_ignore_idx']], dim=0)
                area_inter, area_union = Evaluator.classify_prediction(out.argmax(dim=1), target, query_ignore_idx)
            else:
                area_inter, area_union = Evaluator.classify_prediction(out.argmax(dim=1), target)
        self.train_average_meter.update(area_inter, area_union, class_info, loss.detach().clone())
        if self.global_rank == 0:
            return_value = self.train_average_meter.write_process(batch_nb, self.len_train_dataloader, self.current_epoch, write_batch_idx=50)
            if return_value is not None:
                iou, fb_iou = return_value
                self.log("fewshot_train_iou", iou)
                self.log("fewshot_trainl_fb_iou", fb_iou)

        return loss

    def training_epoch_end(self, outs):
        if self.global_rank == 0:
            self.train_average_meter.write_result('Training', self.current_epoch)
        self.fewshot_trn_loss = utils.mean(self.train_average_meter.loss_buf)
        self.fewshot_trn_miou, self.fewshot_trn_fb_iou = self.train_average_meter.compute_iou()

        self.log("fewshot_trn_loss", self.fewshot_trn_loss)
        self.log("fewshot_trn_miou", self.fewshot_trn_miou)
        self.log("fewshot_trn_fb_iou", self.fewshot_trn_fb_iou)

    def validation_step(self, batch, batch_nb):
        if self.args.finetune_mode and self.args.nshot == 5:
            bshape = batch['query_img'].shape
            img = batch['query_img'].view(-1, bshape[2], bshape[3], bshape[4])
            target = batch['query_mask'].view(-1, bshape[3], bshape[4])
            class_info = batch['class_id']
            for i in range(1, 5):
                class_info = torch.cat([class_info, batch['class_id']])
            out = self(img, class_info)
            val_loss = self.criterion(out, target)
            # 3. Evaluate prediction
            if self.args.benchmark == 'pascal' and batch['query_ignore_idx'] is not None:
                query_ignore_idx = batch['query_ignore_idx'].view(-1, bshape[3], bshape[4])
                area_inter, area_union = Evaluator.classify_prediction(out.argmax(dim=1), target, query_ignore_idx)
            else:
                area_inter, area_union = Evaluator.classify_prediction(out.argmax(dim=1), target)
        else:
            img = batch['query_img'].squeeze(1)
            target = batch['query_mask'].squeeze(1)
            class_info = batch['class_id']
            out = self(img, class_info)
            val_loss = self.criterion(out, target)
            # 3. Evaluate prediction
            if self.args.benchmark == 'pascal' and batch['query_ignore_idx'] is not None:
                query_ignore_idx = batch['query_ignore_idx'].squeeze(1)
                area_inter, area_union = Evaluator.classify_prediction(out.argmax(dim=1), target, query_ignore_idx)
            else:
                area_inter, area_union = Evaluator.classify_prediction(out.argmax(dim=1), target)

        self.val_average_meter.update(area_inter, area_union, class_info, val_loss.detach().clone())
        if self.global_rank == 0:
            return_value = self.val_average_meter.write_process(batch_nb, self.len_val_dataloader, self.current_epoch, write_batch_idx=50) 
            if return_value is not None:
                iou, fb_iou = return_value
                self.log("fewshot_val_iou", iou)
                self.log("fewshot_val_fb_iou", fb_iou)

    
    def validation_epoch_end(self, outs):
        if self.global_rank == 0:
            self.val_average_meter.write_result('Validation', self.current_epoch)
        val_loss = utils.mean(self.val_average_meter.loss_buf)
        val_miou, val_fb_iou = self.val_average_meter.compute_iou()
        self.log("fewshot_val_loss", val_loss)
        self.log("fewshot_val_miou", val_miou)
        self.log("fewshot_val_fb_iou", val_fb_iou)

        if self.global_rank == 0:
            Logger.tbd_writer.add_scalars('fewshot_data/data/loss', {'trn_loss': self.fewshot_trn_loss, 'val_loss': val_loss}, self.current_epoch)
            Logger.tbd_writer.add_scalars('fewshot_data/data/miou', {'trn_miou': self.fewshot_trn_miou, 'val_miou': val_miou}, self.current_epoch)
            Logger.tbd_writer.add_scalars('fewshot_data/data/fb_iou', {'trn_fb_iou': self.fewshot_trn_fb_iou, 'val_fb_iou': val_fb_iou}, self.current_epoch)
            Logger.tbd_writer.flush()
            if self.current_epoch + 1 == self.epochs:
                Logger.tbd_writer.close()
                Logger.info('==================== Finished Training ====================')

        threshold_epoch = 3
        if self.args.benchmark in ['pascal', 'coco'] and self.current_epoch >= threshold_epoch:
            print('End this loop!')
            exit()

    def configure_optimizers(self):
        # if we want to fix the encoder
        if self.fixed_encoder:
            params_list = [
                {"params": self.net.pretrained.model.parameters(), "lr": 0},
            ]
            params_list.append(
                    {"params": self.net.pretrained.act_postprocess1.parameters(), "lr": self.base_lr}
                )
            params_list.append(
                    {"params": self.net.pretrained.act_postprocess2.parameters(), "lr": self.base_lr}
                )
            params_list.append(
                    {"params": self.net.pretrained.act_postprocess3.parameters(), "lr": self.base_lr}
                )
            params_list.append(
                    {"params": self.net.pretrained.act_postprocess4.parameters(), "lr": self.base_lr}
                )
        else:
            params_list = [
                {"params": self.net.pretrained.parameters(), "lr": self.base_lr},
            ]

        if hasattr(self.net, "scratch"):
            print("Found output scratch")
            params_list.append(
                {"params": self.net.scratch.parameters(), "lr": self.base_lr * 10}
            )
        if hasattr(self.net, "auxlayer"):
            print("Found auxlayer")
            params_list.append(
                {"params": self.net.auxlayer.parameters(), "lr": self.base_lr * 10}
            )
        if hasattr(self.net, "scale_inv_conv"):
            print(self.net.scale_inv_conv)
            print("Found scaleinv layers")
            params_list.append(
                {
                    "params": self.net.scale_inv_conv.parameters(),
                    "lr": self.base_lr * 10,
                }
            )
            params_list.append(
                {"params": self.net.scale2_conv.parameters(), "lr": self.base_lr * 10}
            )
            params_list.append(
                {"params": self.net.scale3_conv.parameters(), "lr": self.base_lr * 10}
            )
            params_list.append(
                {"params": self.net.scale4_conv.parameters(), "lr": self.base_lr * 10}
            )

        if self.other_kwargs["midasproto"]:
            print("Using midas optimization protocol")
            
            opt = torch.optim.Adam(
                params_list,
                lr=self.base_lr,
                betas=(0.9, 0.999),
                weight_decay=self.other_kwargs["weight_decay"],
            )
            sch = torch.optim.lr_scheduler.LambdaLR(
                opt, lambda x: pow(1.0 - x / self.epochs, 0.9)
            )
        else:
            opt = torch.optim.SGD(
                params_list,
                lr=self.base_lr,
                momentum=0.9,
                weight_decay=self.other_kwargs["weight_decay"],
            )

            sch = torch.optim.lr_scheduler.LambdaLR(
                opt, lambda x: pow(1.0 - x / self.epochs, 0.9)
            )
        return [opt], [sch]

    def train_dataloader(self):
        if self.args.finetune_mode:
            dataloader = FSSDataset.build_dataloader(
                self.args.benchmark, 
                self.args.bsz, 
                self.args.nworker, 
                self.args.fold,
                'test', 
                self.args.nshot)
        else:
            dataloader = FSSDataset.build_dataloader(
                self.args.benchmark, 
                self.args.bsz, 
                self.args.nworker, 
                self.args.fold,
                'trn')

        self.len_train_dataloader = len(dataloader) // torch.cuda.device_count()
        self.train_average_meter = AverageMeter(dataloader.dataset)
        return dataloader

    def val_dataloader(self):
        self.val_iou = SegmentationMetric(self.num_classes)
        if self.args.finetune_mode:
            dataloader = FSSDataset.build_dataloader(
                self.args.benchmark, 
                self.args.bsz, 
                self.args.nworker, 
                self.args.fold,
                'test', 
                self.args.nshot)
        else:
            dataloader = FSSDataset.build_dataloader(
                            self.args.benchmark, 
                            self.args.bsz, 
                            self.args.nworker, 
                            self.args.fold,
                            'val')
        self.len_val_dataloader = len(dataloader) // torch.cuda.device_count()
        self.val_average_meter = AverageMeter(dataloader.dataset)
        return dataloader


    def criterion(self, logit_mask, gt_mask):
        bsz = logit_mask.size(0)
        logit_mask = logit_mask.view(bsz, 2, -1)
        gt_mask = gt_mask.view(bsz, -1).long()

        return self.cross_entropy_loss(logit_mask, gt_mask)

    
    @staticmethod
    def add_model_specific_args(parent_parser):
        parser = ArgumentParser(parents=[parent_parser], add_help=False)
        parser.add_argument(
            "--data_path", 
            type=str, 
            default='',
            help="path where dataset is stored"
        )
        parser.add_argument(
            "--dataset",
            type=str, 
            default='pascal', 
            choices=['pascal', 'coco', 'fss'],
        )
        parser.add_argument(
            "--batch_size", type=int, default=20, help="size of the batches"
        )
        parser.add_argument(
            "--base_lr", type=float, default=0.004, help="learning rate"
        )
        parser.add_argument("--momentum", type=float, default=0.9, help="SGD momentum")
        parser.add_argument(
            "--weight_decay", type=float, default=1e-4, help="weight_decay"
        )
        parser.add_argument(
            "--aux", action="store_true", default=False, help="Auxilary Loss"
        )
        parser.add_argument(
            "--aux-weight",
            type=float,
            default=0.2,
            help="Auxilary loss weight (default: 0.2)",
        )
        parser.add_argument(
            "--se-loss",
            action="store_true",
            default=False,
            help="Semantic Encoding Loss SE-loss",
        )
        parser.add_argument(
            "--se-weight", type=float, default=0.2, help="SE-loss weight (default: 0.2)"
        )

        parser.add_argument(
            "--midasproto", action="store_true", default=False, help="midasprotocol"
        )

        parser.add_argument(
            "--ignore_index",
            type=int,
            default=-1,
            help="numeric value of ignore label in gt",
        )
        parser.add_argument(
            "--augment",
            action="store_true",
            default=False,
            help="Use extended augmentations",
        )
        parser.add_argument(
            "--use_relabeled",
            action="store_true",
            default=False,
            help="Use extended augmentations",
        )

        parser.add_argument(
            "--nworker", 
            type=int, 
            default=8
            )

        parser.add_argument(
            "--fold", 
            type=int, 
            default=0, 
            choices=[0, 1, 2, 3]
            )

        parser.add_argument(
            "--logpath", 
            type=str, 
            default=''
            )
        
        parser.add_argument(
            "--nshot", 
            type=int, 
            default=0 #1
            )
        parser.add_argument(
            "--finetune_mode", 
            action="store_true", 
            default=False, 
            help="whether finetune or not"
        )


        return parser