File size: 4,591 Bytes
57746f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
r""" Hypercorrelation Squeeze training (validation) code """
import argparse

import torch.optim as optim
import torch.nn as nn
import torch

from fewshot_data.model.hsnet import HypercorrSqueezeNetwork
from fewshot_data.common.logger import Logger, AverageMeter
from fewshot_data.common.evaluation import Evaluator
from fewshot_data.common import utils
from fewshot_data.data.dataset import FSSDataset


def train(epoch, model, dataloader, optimizer, training):
    r""" Train HSNet """

    # Force randomness during training / freeze randomness during testing
    utils.fix_randseed(None) if training else utils.fix_randseed(0)
    model.module.train_mode() if training else model.module.eval()
    average_meter = AverageMeter(dataloader.dataset)

    for idx, batch in enumerate(dataloader):
        # 1. Hypercorrelation Squeeze Networks forward pass
        batch = utils.to_cuda(batch)
        logit_mask = model(batch['query_img'], batch['support_imgs'].squeeze(1), batch['support_masks'].squeeze(1))
        pred_mask = logit_mask.argmax(dim=1)

        # 2. Compute loss & update model parameters
        loss = model.module.compute_objective(logit_mask, batch['query_mask'])
        if training:
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

        # 3. Evaluate prediction
        area_inter, area_union = Evaluator.classify_prediction(pred_mask, batch)
        average_meter.update(area_inter, area_union, batch['class_id'], loss.detach().clone())
        average_meter.write_process(idx, len(dataloader), epoch, write_batch_idx=50)

    # Write evaluation results
    average_meter.write_result('Training' if training else 'Validation', epoch)
    avg_loss = utils.mean(average_meter.loss_buf)
    miou, fb_iou = average_meter.compute_iou()

    return avg_loss, miou, fb_iou


if __name__ == '__main__':

    # Arguments parsing
    parser = argparse.ArgumentParser(description='Hypercorrelation Squeeze Pytorch Implementation')
    parser.add_argument('--datapath', type=str, default='fewshot_data/Datasets_HSN')
    parser.add_argument('--benchmark', type=str, default='pascal', choices=['pascal', 'coco', 'fss'])
    parser.add_argument('--logpath', type=str, default='')
    parser.add_argument('--bsz', type=int, default=20)
    parser.add_argument('--lr', type=float, default=1e-3)
    parser.add_argument('--niter', type=int, default=2000)
    parser.add_argument('--nworker', type=int, default=8)
    parser.add_argument('--fold', type=int, default=0, choices=[0, 1, 2, 3])
    parser.add_argument('--backbone', type=str, default='resnet101', choices=['vgg16', 'resnet50', 'resnet101'])
    args = parser.parse_args()
    Logger.initialize(args, training=True)

    # Model initialization
    model = HypercorrSqueezeNetwork(args.backbone, False)
    Logger.log_params(model)

    # Device setup
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    Logger.info('# available GPUs: %d' % torch.cuda.device_count())
    model = nn.DataParallel(model)
    model.to(device)

    # Helper classes (for training) initialization
    optimizer = optim.Adam([{"params": model.parameters(), "lr": args.lr}])
    Evaluator.initialize()

    # Dataset initialization
    FSSDataset.initialize(img_size=400, datapath=args.datapath, use_original_imgsize=False)
    dataloader_trn = FSSDataset.build_dataloader(args.benchmark, args.bsz, args.nworker, args.fold, 'trn')
    dataloader_val = FSSDataset.build_dataloader(args.benchmark, args.bsz, args.nworker, args.fold, 'val')

    # Train HSNet
    best_val_miou = float('-inf')
    best_val_loss = float('inf')
    for epoch in range(args.niter):

        trn_loss, trn_miou, trn_fb_iou = train(epoch, model, dataloader_trn, optimizer, training=True)
        with torch.no_grad():
            val_loss, val_miou, val_fb_iou = train(epoch, model, dataloader_val, optimizer, training=False)

        # Save the best model
        if val_miou > best_val_miou:
            best_val_miou = val_miou
            Logger.save_model_miou(model, epoch, val_miou)

        Logger.tbd_writer.add_scalars('fewshot_data/data/loss', {'trn_loss': trn_loss, 'val_loss': val_loss}, epoch)
        Logger.tbd_writer.add_scalars('fewshot_data/data/miou', {'trn_miou': trn_miou, 'val_miou': val_miou}, epoch)
        Logger.tbd_writer.add_scalars('fewshot_data/data/fb_iou', {'trn_fb_iou': trn_fb_iou, 'val_fb_iou': val_fb_iou}, epoch)
        Logger.tbd_writer.flush()
    Logger.tbd_writer.close()
    Logger.info('==================== Finished Training ====================')