File size: 3,784 Bytes
57746f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
"""
ArkitScenes Dataset

Author: Xiaoyang Wu ([email protected])
Please cite our work if the code is helpful to you.
"""

import os
import glob
import numpy as np
import torch
from copy import deepcopy
from torch.utils.data import Dataset

from pointcept.utils.logger import get_root_logger
from .builder import DATASETS
from .transform import Compose, TRANSFORMS
from .preprocessing.scannet.meta_data.scannet200_constants import VALID_CLASS_IDS_200


@DATASETS.register_module()
class ArkitScenesDataset(Dataset):
    def __init__(
        self,
        split="Training",
        data_root="data/ARKitScenesMesh",
        transform=None,
        test_mode=False,
        test_cfg=None,
        loop=1,
    ):
        super(ArkitScenesDataset, self).__init__()
        self.data_root = data_root
        self.split = split
        self.transform = Compose(transform)
        self.loop = (
            loop if not test_mode else 1
        )  # force make loop = 1 while in test mode
        self.test_mode = test_mode
        self.test_cfg = test_cfg if test_mode else None
        self.class2id = np.array(VALID_CLASS_IDS_200)

        if test_mode:
            self.test_voxelize = TRANSFORMS.build(self.test_cfg.voxelize)
            self.test_crop = TRANSFORMS.build(self.test_cfg.crop)
            self.post_transform = Compose(self.test_cfg.post_transform)
            self.aug_transform = [Compose(aug) for aug in self.test_cfg.aug_transform]

        self.data_list = self.get_data_list()
        logger = get_root_logger()
        logger.info(
            "Totally {} x {} samples in {} set.".format(
                len(self.data_list), self.loop, split
            )
        )

    def get_data_list(self):
        if isinstance(self.split, str):
            data_list = glob.glob(os.path.join(self.data_root, self.split, "*.pth"))
        elif isinstance(self.split, list):
            data_list = []
            for split in self.split:
                data_list += glob.glob(os.path.join(self.data_root, split, "*.pth"))
        else:
            raise NotImplementedError
        return data_list

    def get_data(self, idx):
        data = torch.load(self.data_list[idx % len(self.data_list)])
        coord = data["coord"]
        color = data["color"]
        normal = data["normal"]
        segment = np.zeros(coord.shape[0])
        data_dict = dict(coord=coord, normal=normal, color=color, segment=segment)
        return data_dict

    def get_data_name(self, idx):
        data_idx = self.data_idx[idx % len(self.data_idx)]
        return os.path.basename(self.data_list[data_idx]).split(".")[0]

    def prepare_train_data(self, idx):
        # load data
        data_dict = self.get_data(idx)
        data_dict = self.transform(data_dict)
        return data_dict

    def prepare_test_data(self, idx):
        # load data
        data_dict = self.get_data(idx)
        segment = data_dict.pop("segment")
        data_dict = self.transform(data_dict)
        data_dict_list = []
        for aug in self.aug_transform:
            data_dict_list.append(aug(deepcopy(data_dict)))

        input_dict_list = []
        for data in data_dict_list:
            data_part_list = self.test_voxelize(data)
            for data_part in data_part_list:
                data_part_list = self.test_crop(data_part)
                input_dict_list += data_part_list

        for i in range(len(input_dict_list)):
            input_dict_list[i] = self.post_transform(input_dict_list[i])
        return input_dict_list, segment

    def __getitem__(self, idx):
        if self.test_mode:
            return self.prepare_test_data(idx)
        else:
            return self.prepare_train_data(idx)

    def __len__(self):
        return len(self.data_list) * self.loop