# main.py import gradio as gr import numpy as np import random import torch import os from diffusers import SanaSprintPipeline from PIL import Image # Initialize device and dtype dtype = torch.bfloat16 device = "cuda" if torch.cuda.is_available() else "cpu" # Load models pipe = SanaSprintPipeline.from_pretrained( "Efficient-Large-Model/Sana_Sprint_0.6B_1024px_diffusers", torch_dtype=dtype ) pipe2 = SanaSprintPipeline.from_pretrained( "Efficient-Large-Model/Sana_Sprint_1.6B_1024px_diffusers", torch_dtype=dtype ) pipe.to(device) pipe2.to(device) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 def generate_image(prompt, model_size, seed, randomize_seed, width, height, guidance_scale, steps): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) selected_pipe = pipe if model_size == "0.6B" else pipe2 result = selected_pipe( prompt=prompt, guidance_scale=guidance_scale, num_inference_steps=steps, width=width, height=height, generator=generator, output_type="pil" ) image = result.images[0] filename = f"output_{seed}.png" image.save(filename) return image, filename, seed css = """ #col-container { margin: 0 auto; max-width: 800px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown("# 🚀 Sana Sprint Image Generator") with gr.Row(): with gr.Column(): prompt = gr.Textbox( label="Enter Prompt", placeholder="A surreal landscape with...", lines=3 ) model_size = gr.Radio( label="Model Size", choices=["0.6B", "1.6B"], value="1.6B" ) with gr.Accordion("Advanced Settings", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, value=42, step=1 ) randomize_seed = gr.Checkbox( label="Randomize Seed", value=True ) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, value=1024, step=32 ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, value=1024, step=32 ) guidance_scale = gr.Slider( label="Guidance Scale", minimum=1.0, maximum=15.0, value=4.5, step=0.1 ) steps = gr.Slider( label="Inference Steps", minimum=1, maximum=50, value=2, step=1 ) generate_btn = gr.Button("Generate Image", variant="primary") with gr.Column(): output_image = gr.Image(label="Generated Image") file_output = gr.File(label="Download Image") seed_info = gr.Textbox(label="Used Seed") gr.Examples( examples=[ ["a tiny astronaut hatching from an egg on the moon", "1.6B"], ["🐶 Wearing 🕶 flying on the 🌈", "1.6B"], ["an anime illustration of a wiener schnitzel", "0.6B"] ], inputs=[prompt, model_size], outputs=[output_image, file_output, seed_info], fn=generate_image, cache_examples=True ) generate_btn.click( fn=generate_image, inputs=[prompt, model_size, seed, randomize_seed, width, height, guidance_scale, steps], outputs=[output_image, file_output, seed_info] ) if __name__ == "__main__": demo.launch(server_name="0.0.0.0")