Spaces:
Runtime error
Runtime error
# main.py | |
import gradio as gr | |
import numpy as np | |
import random | |
import torch | |
import os | |
from diffusers import SanaSprintPipeline | |
from PIL import Image | |
# Initialize device and dtype | |
dtype = torch.bfloat16 | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# Load models | |
pipe = SanaSprintPipeline.from_pretrained( | |
"Efficient-Large-Model/Sana_Sprint_0.6B_1024px_diffusers", | |
torch_dtype=dtype | |
) | |
pipe2 = SanaSprintPipeline.from_pretrained( | |
"Efficient-Large-Model/Sana_Sprint_1.6B_1024px_diffusers", | |
torch_dtype=dtype | |
) | |
pipe.to(device) | |
pipe2.to(device) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
def generate_image(prompt, model_size, seed, randomize_seed, width, height, guidance_scale, steps): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
selected_pipe = pipe if model_size == "0.6B" else pipe2 | |
result = selected_pipe( | |
prompt=prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=steps, | |
width=width, | |
height=height, | |
generator=generator, | |
output_type="pil" | |
) | |
image = result.images[0] | |
filename = f"output_{seed}.png" | |
image.save(filename) | |
return image, filename, seed | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 800px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown("# π Sana Sprint Image Generator") | |
with gr.Row(): | |
with gr.Column(): | |
prompt = gr.Textbox( | |
label="Enter Prompt", | |
placeholder="A surreal landscape with...", | |
lines=3 | |
) | |
model_size = gr.Radio( | |
label="Model Size", | |
choices=["0.6B", "1.6B"], | |
value="1.6B" | |
) | |
with gr.Accordion("Advanced Settings", open=False): | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
value=42, | |
step=1 | |
) | |
randomize_seed = gr.Checkbox( | |
label="Randomize Seed", | |
value=True | |
) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
value=1024, | |
step=32 | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
value=1024, | |
step=32 | |
) | |
guidance_scale = gr.Slider( | |
label="Guidance Scale", | |
minimum=1.0, | |
maximum=15.0, | |
value=4.5, | |
step=0.1 | |
) | |
steps = gr.Slider( | |
label="Inference Steps", | |
minimum=1, | |
maximum=50, | |
value=2, | |
step=1 | |
) | |
generate_btn = gr.Button("Generate Image", variant="primary") | |
with gr.Column(): | |
output_image = gr.Image(label="Generated Image") | |
file_output = gr.File(label="Download Image") | |
seed_info = gr.Textbox(label="Used Seed") | |
gr.Examples( | |
examples=[ | |
["a tiny astronaut hatching from an egg on the moon", "1.6B"], | |
["πΆ Wearing πΆ flying on the π", "1.6B"], | |
["an anime illustration of a wiener schnitzel", "0.6B"] | |
], | |
inputs=[prompt, model_size], | |
outputs=[output_image, file_output, seed_info], | |
fn=generate_image, | |
cache_examples=True | |
) | |
generate_btn.click( | |
fn=generate_image, | |
inputs=[prompt, model_size, seed, randomize_seed, width, height, guidance_scale, steps], | |
outputs=[output_image, file_output, seed_info] | |
) | |
if __name__ == "__main__": | |
demo.launch(server_name="0.0.0.0") |