|
import argparse |
|
import base64 |
|
import io |
|
import os |
|
import sys |
|
|
|
import cv2 |
|
import gradio as gr |
|
import numpy as np |
|
import requests |
|
from functools import partial |
|
from PIL import Image, ImageOps |
|
|
|
sys.path.append(os.path.join(os.environ['LLAVA_INTERACTIVE_HOME'], 'GLIGEN/demo')) |
|
import GLIGEN.demo.app as GLIGEN |
|
sys.path.append(os.path.join(os.environ['LLAVA_INTERACTIVE_HOME'], 'SEEM/demo_code')) |
|
import SEEM.demo_code.app as SEEM |
|
sys.path.append(os.path.join(os.environ['LLAVA_INTERACTIVE_HOME'], 'LLaVA')) |
|
import LLaVA.llava.serve.gradio_web_server as LLAVA |
|
|
|
class ImageMask(gr.components.Image): |
|
""" |
|
Sets: source="canvas", tool="sketch" |
|
""" |
|
|
|
is_template = True |
|
|
|
def __init__(self, **kwargs): |
|
super().__init__(source="upload", tool="sketch", interactive=True, **kwargs) |
|
|
|
def preprocess(self, x): |
|
if isinstance(x, str): |
|
x = {'image': x, 'mask': x} |
|
elif isinstance(x, dict): |
|
if (x['mask'] is None and x['image'] is None): |
|
x |
|
elif (x['image'] is None): |
|
x['image'] = str(x['mask']) |
|
elif (x['mask'] is None): |
|
x['mask'] = str(x['image']) |
|
elif x is not None: |
|
assert False, 'Unexpected type {0} in ImageMask preprocess()'.format(type(x)) |
|
|
|
return super().preprocess(x) |
|
|
|
css = """ |
|
#compose_btn { |
|
--tw-border-opacity: 1; |
|
border-color: rgb(255 216 180 / var(--tw-border-opacity)); |
|
--tw-gradient-from: rgb(255 216 180 / .7); |
|
--tw-gradient-to: rgb(255 216 180 / 0); |
|
--tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to); |
|
--tw-gradient-to: rgb(255 176 102 / .8); |
|
--tw-text-opacity: 1; |
|
color: rgb(238 116 0 / var(--tw-text-opacity)); |
|
} |
|
""" |
|
|
|
def get_bounding_box(img): |
|
|
|
if (np.any(img) == False): |
|
return None |
|
non_zero_indices = np.nonzero(img) |
|
|
|
|
|
min_x = np.min(non_zero_indices[1]) |
|
max_x = np.max(non_zero_indices[1]) |
|
min_y = np.min(non_zero_indices[0]) |
|
max_y = np.max(non_zero_indices[0]) |
|
|
|
|
|
return (min_x, min_y, max_x, max_y) |
|
|
|
def composite_all_layers(base, objects): |
|
img = base.copy() |
|
for obj in objects: |
|
for i in range(obj['img'].shape[0]): |
|
for j in range(obj['img'].shape[1]): |
|
if obj['img'][i, j, 3] != 0: |
|
img[i, j] = obj['img'][i, j] |
|
return img |
|
|
|
def changed_objects_handler(mask_dilate_slider, state, evt: gr.SelectData): |
|
state['move_no'] += 1 |
|
|
|
pos_x, pos_y = evt.index |
|
obj_id = 255 - evt.value |
|
print(f"obj {obj_id} moved by {pos_x}, {pos_y}") |
|
|
|
img = state['base_layer'] |
|
for obj in state['changed_objects']: |
|
if obj['id'] == obj_id: |
|
img = obj['img'] |
|
state['changed_objects'].remove(obj) |
|
break |
|
|
|
new_img = np.zeros_like(img) |
|
bbox = None |
|
for i in range(img.shape[0]): |
|
for j in range(img.shape[1]): |
|
if img[i, j, 3] == obj_id: |
|
new_i = i + pos_y |
|
new_j = j + pos_x |
|
if new_i >= 0 and new_i < img.shape[0] and new_j >= 0 and new_j < img.shape[1]: |
|
new_img[new_i, new_j] = img[i, j] |
|
img[i, j] = 0 |
|
|
|
bbox = get_bounding_box(new_img) |
|
print("bbox: ", bbox) |
|
state['changed_objects'].append({'id': obj_id, 'img': new_img, 'text': state['segment_info'][obj_id], 'box': bbox}) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return mask_dilate_slider, state['base_layer_masked'], state |
|
|
|
def get_base_layer_mask(state): |
|
|
|
changed_obj_id = [] |
|
for obj in state['changed_objects']: |
|
changed_obj_id.append(obj['id']) |
|
|
|
|
|
img = state['orignal_segmented'] |
|
mask = np.zeros(img.shape[:2], dtype=np.uint8) |
|
for i in range(img.shape[0]): |
|
for j in range(img.shape[1]): |
|
if img[i, j, 3] in changed_obj_id: |
|
mask[i, j] = 255 |
|
state['base_layer_mask'] = mask |
|
|
|
mask_image = Image.fromarray(mask) |
|
if (mask_image.mode != "L"): |
|
mask_image = mask_image.convert("L") |
|
mask_image = ImageOps.invert(mask_image) |
|
|
|
|
|
img = state['orignal_segmented'] |
|
orig_image = Image.fromarray(img[:,:,:3]) |
|
orig_image.save("orig_image.png") |
|
transparent = Image.new(orig_image.mode, orig_image.size, (0, 0, 0, 0)) |
|
masked_image = Image.composite(orig_image, transparent, mask_image) |
|
|
|
|
|
return masked_image, state |
|
|
|
def get_inpainted_background(state, mask_dilate_slider): |
|
|
|
|
|
url = "http://localhost:9171/api/v2/image" |
|
|
|
img = state['orignal_segmented'] |
|
if (isinstance(img, Image.Image) is not True): |
|
img = Image.fromarray(img) |
|
|
|
buffer = io.BytesIO() |
|
img.save(buffer, format="PNG") |
|
|
|
img_bytes = buffer.getvalue() |
|
|
|
encoded_string = base64.b64encode(img_bytes).decode("utf-8") |
|
|
|
if (mask_dilate_slider != 0) : |
|
mask = state['base_layer_mask_enlarged'] |
|
else: |
|
mask = state['base_layer_mask'] |
|
if (isinstance(mask, Image.Image) is not True): |
|
mask = Image.fromarray(mask) |
|
|
|
|
|
if (mask.mode != "L"): |
|
mask = mask.convert("L") |
|
mask = ImageOps.invert(mask) |
|
|
|
|
|
buffer = io.BytesIO() |
|
mask.save(buffer, format="PNG") |
|
|
|
mask_bytes = buffer.getvalue() |
|
|
|
encoded_string_mask = base64.b64encode(mask_bytes).decode("utf-8") |
|
|
|
|
|
|
|
headers = {"Content-Type": "application/json"} |
|
data = {"image": encoded_string, "mask": encoded_string_mask} |
|
response = requests.post(url, headers=headers, json=data) |
|
|
|
|
|
if response.status_code == 200: |
|
|
|
print("Image received successfully") |
|
image_data = response.content |
|
|
|
dataBytesIO = io.BytesIO(image_data) |
|
|
|
image = Image.open(dataBytesIO) |
|
|
|
|
|
else: |
|
|
|
print("Error: HTTP status code {}".format(response.status_code)) |
|
print(response.text) |
|
|
|
return image |
|
|
|
def get_enlarged_masked_background(state, mask_dilate_slider): |
|
|
|
mask = state['base_layer_mask'] |
|
|
|
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (mask_dilate_slider, mask_dilate_slider)) |
|
mask_dilated = cv2.dilate(mask, kernel) |
|
|
|
|
|
mask_image = Image.fromarray(mask_dilated) |
|
if (mask_image.mode != "L"): |
|
mask_image = mask_image.convert("L") |
|
mask_image = ImageOps.invert(mask_image) |
|
state['base_layer_mask_enlarged'] = mask_image |
|
|
|
|
|
img = state['orignal_segmented'] |
|
orig_image = Image.fromarray(img[:,:,:3]) |
|
transparent = Image.new(orig_image.mode, orig_image.size, (0, 0, 0, 0)) |
|
masked_image = Image.composite(orig_image, transparent, mask_image) |
|
|
|
|
|
return masked_image, state |
|
|
|
def get_base_layer_inpainted(state, mask_dilate_slider): |
|
masked_img, state = get_enlarged_masked_background(state, mask_dilate_slider) |
|
inpainted_img = get_inpainted_background(state, mask_dilate_slider) |
|
state['base_layer_inpainted'] = np.array(inpainted_img) |
|
return masked_img, inpainted_img, state |
|
|
|
def log_image_and_mask(img, mask): |
|
counter = 0 |
|
for filename in os.listdir('.'): |
|
if filename.startswith('img_') and filename.endswith('.png'): |
|
try: |
|
num = int(filename[4:-4]) |
|
if num > counter: |
|
counter = num |
|
except ValueError: |
|
pass |
|
counter += 1 |
|
cv2.imwrite(f"img_{counter}.png", img) |
|
cv2.imwrite(f"img_{counter}_mask.png", mask.astype(np.uint8) * 255) |
|
|
|
def get_segments (img, task, reftxt, mask_dilate_slider, state): |
|
assert (isinstance(state, dict)) |
|
state['orignal_segmented'] = None |
|
state['base_layer'] = None |
|
state['base_layer_masked'] = None |
|
state['base_layer_mask'] = None |
|
state['base_layer_mask_enlarged'] = None |
|
state['base_layer_inpainted'] = None |
|
state['segment_info'] = None |
|
state['seg_boxes'] = {} |
|
state['changed_objects'] = [] |
|
state['move_no'] = 0 |
|
|
|
print("Calling SEEM_app.inference") |
|
|
|
if isinstance(img['image'], np.ndarray): |
|
pil_image = Image.fromarray(img['image']) |
|
if isinstance(img['mask'], np.ndarray): |
|
pil_mask = Image.fromarray(img['mask']) |
|
img = {'image': pil_image, 'mask': pil_mask} |
|
img_ret, seg_info = SEEM.inference (img, task, reftxt=reftxt) |
|
|
|
tgt_size=(img['image'].width, img['image'].height) |
|
img_ret = img_ret.resize(tgt_size, resample=Image.Resampling.NEAREST) |
|
state['orignal_segmented'] = np.array(img_ret).copy() |
|
state['base_layer'] = np.array(img_ret) |
|
state['segment_info'] = seg_info |
|
img_ret_array = np.array(img_ret) |
|
img_ret_array[:,:,3] = 255 - img_ret_array[:,:,3] |
|
|
|
|
|
|
|
|
|
for obj_id, lable in seg_info.items(): |
|
obj_img = (img_ret_array[:,:,3] == 255 - obj_id) |
|
|
|
|
|
bbox = get_bounding_box(obj_img) |
|
print(f"obj_id={obj_id}, lable={lable}, bbox={bbox}") |
|
state['seg_boxes'][obj_id] = bbox |
|
|
|
|
|
data = {} |
|
data["index"] = (0, 0) |
|
data["value"] = 254 |
|
data["selected"] = True |
|
evt = gr.SelectData(None, data) |
|
mask_dilate_slider, _, state = changed_objects_handler(mask_dilate_slider, state, evt) |
|
|
|
state['base_layer_masked'], state = get_base_layer_mask(state) |
|
if (mask_dilate_slider != 0): |
|
enlarged_masked_background, state = get_enlarged_masked_background(state, mask_dilate_slider) |
|
state['base_layer_inpainted'] = np.array(get_inpainted_background(state, mask_dilate_slider)) |
|
|
|
return Image.fromarray(img_ret_array), enlarged_masked_background, state['base_layer_inpainted'], state |
|
|
|
def get_generated(grounding_text, fix_seed, rand_seed, state): |
|
|
|
if ('base_layer_inpainted' in state) == False : |
|
raise gr.Error('The segmentation step must be completed first before generating a new image') |
|
|
|
inpainted_background_img = state['base_layer_inpainted'] |
|
assert inpainted_background_img is not None, 'base layer should be inpainted after segment' |
|
|
|
state['boxes'] = [] |
|
for items in state['changed_objects']: |
|
if items['box'] is not None: |
|
state['boxes'].append(items['box']) |
|
|
|
if (len(state['boxes']) == 0): |
|
if (len(grounding_text) != 0): |
|
grounding_text = [] |
|
print("No grounding box found. Grounding text will be ignored.") |
|
return inpainted_background_img.copy(), state, None |
|
|
|
print('Calling GLIGEN_app.generate') |
|
print('grounding_text: ', grounding_text) |
|
print(state['boxes'], len(state['boxes'])) |
|
assert len(state['boxes']) == 1, 'Only handle one segmented object at a time' |
|
if (len(grounding_text) == 0): |
|
raise gr.Error('Please providing grounding text to match the identified object') |
|
out_gen_1, _, _, _, state = GLIGEN.generate(task='Grounded Inpainting', language_instruction='', |
|
grounding_texts=grounding_text, sketch_pad=inpainted_background_img, |
|
alpha_sample=0.3, guidance_scale=7.5, batch_size=1, |
|
fix_seed=fix_seed, rand_seed=rand_seed, use_actual_mask=False, append_grounding=True, |
|
style_cond_image=None, inpainting_image=inpainted_background_img, inpainting_mask=None, state=state) |
|
|
|
return out_gen_1['value'], state |
|
|
|
def get_generated_full(task, language_instruction, grounding_instruction, sketch_pad, |
|
alpha_sample, guidance_scale, batch_size, |
|
fix_seed, rand_seed, |
|
use_actual_mask, |
|
append_grounding, style_cond_image, |
|
state): |
|
|
|
out_gen_1, _, _, _, state = GLIGEN.generate( |
|
task, language_instruction, grounding_instruction, sketch_pad, |
|
alpha_sample, guidance_scale, batch_size, |
|
fix_seed, rand_seed, |
|
use_actual_mask, |
|
append_grounding, style_cond_image, |
|
state) |
|
return out_gen_1['value'], state |
|
|
|
def gligen_change_task(state): |
|
if (state['working_image'] is not None): |
|
task = "Grounded Inpainting" |
|
else: |
|
task = "Grounded Generation" |
|
return task |
|
|
|
def clear_sketch_pad_mask(sketch_pad_image): |
|
sketch_pad = ImageMask.update(value=sketch_pad_image, visible=True) |
|
return sketch_pad |
|
|
|
def save_shared_state(img, state): |
|
if (isinstance(img, dict) and 'image' in img): |
|
state['working_image'] = img['image'] |
|
else: |
|
state['working_image'] = img |
|
return state |
|
|
|
def load_shared_state(state, task = None): |
|
if (task == "Grounded Generation"): |
|
return None |
|
else: |
|
return state['working_image'] |
|
|
|
def update_shared_state(state, task): |
|
if (task == "Grounded Generation"): |
|
state['working_image'] = None |
|
return state |
|
|
|
def update_sketch_pad_trigger(sketch_pad_trigger, task): |
|
if (task == "Grounded Generation"): |
|
sketch_pad_trigger = sketch_pad_trigger + 1 |
|
return sketch_pad_trigger |
|
|
|
def clear_grounding_info(state): |
|
state['boxes'] = [] |
|
state['masks'] = [] |
|
return state, '' |
|
|
|
def switch_to_generate (): |
|
task = "Grounded Generation" |
|
return task, gr.Image.update(visible=True), gr.Textbox.update(visible=True), gr.Textbox.update(visible=True), gr.Button.update(visible=True), gr.Button.update(visible=True), gr.Accordion.update(visible=True) |
|
|
|
def switch_to_inpaint (): |
|
task = "Grounded Inpainting" |
|
return task, gr.Image.update(visible=True), gr.Textbox.update(visible=False), gr.Textbox.update(visible=True), gr.Button.update(visible=True), gr.Button.update(visible=True), gr.Accordion.update(visible=True) |
|
|
|
def switch_to_compose (): |
|
task = "Compose" |
|
return task, gr.Image.update(visible=False), gr.Textbox.update(visible=False), gr.Textbox.update(visible=False), gr.Button.update(visible=False), gr.Button.update(visible=False), gr.Accordion.update(visible=False) |
|
|
|
def copy_to_llava_input(img): |
|
print('WORKING IMAGE CHANGED!!!!') |
|
if (isinstance(img, Image.Image) is not True): |
|
img = Image.fromarray(img) |
|
return img |
|
|
|
title_markdown = (""" |
|
# <p style="text-align: center;">LLaVA Interactive</p> |
|
""") |
|
|
|
def build_demo(): |
|
demo = gr.Blocks(title="LLaVA Interactive", css=css+GLIGEN.css) |
|
with demo: |
|
compose_state = gr.State({'boxes': [], 'move_no': 0, 'base_layer': None, 'segment_info': None, 'seg_boxes': {}, 'changed_objects': []}) |
|
llava_state = gr.State() |
|
shared_state = gr.State({'working_image': None}) |
|
gligen_state = gr.State({'draw_box': True}) |
|
|
|
gr.Markdown('<h1 style="text-align: center;"></h1>') |
|
gr.Markdown('<h1 style="text-align: center;">LLaVA Interactive</h1>') |
|
gr.Markdown('<h1 style="text-align: center;"></h1>') |
|
|
|
gr.Markdown('**Experience interactive multimodal chatting and image manipulation. Select a tab for your task and follow the instructions. Switch tasks anytime and ask questions in the chat window.**') |
|
|
|
with gr.Row(visible=False): |
|
working_image = gr.Image(label="Working Image", type="numpy", elem_id="working_image", visible=False, interactive=False) |
|
|
|
sketch_pad_trigger = gr.Number(value=0, visible=False) |
|
sketch_pad_resize_trigger = gr.Number(value=0, visible=False) |
|
init_white_trigger = gr.Number(value=0, visible=False) |
|
image_scale = gr.Number(value=0, elem_id="image_scale", visible=False) |
|
task = gr.Radio( |
|
choices=["Grounded Generation", 'Grounded Inpainting', 'Compose'], |
|
type="value", |
|
value="Grounded Inpainting", |
|
label="Task", |
|
visible=False |
|
) |
|
|
|
with gr.Row(equal_height=False): |
|
with gr.Column(): |
|
|
|
with gr.Row(): |
|
sketch_pad = ImageMask(label="Sketch Pad", type="numpy", shape=(512, 512), width=384, elem_id="img2img_image", brush_radius=20.0, visible=True) |
|
|
|
compose_tab = gr.Tab("Remove or Change Objects") |
|
with compose_tab: |
|
gr.Markdown("Segment an object by drawing a stroke or giving a referring text. Then press the segment button. Drag the highlighted object to move it. To remove it, drag it out of the frame. To replace it with a new object, give an instruction only if the object is removed and press the generate button until you like the image.") |
|
with gr.Row().style(equal_height=False): |
|
with gr.Column(): |
|
with gr.Group(): |
|
with gr.Column(): |
|
with gr.Row(): |
|
segment_task= gr.Radio(["Stroke", "Text"], value="Stroke", label='Choose segmentation method') |
|
segment_text = gr.Textbox(label="Enter referring text") |
|
segment_btn = gr.Button("Segment", elem_id="segment-btn") |
|
|
|
with gr.Group(): |
|
segmented_img = gr.Image(label="Move or delete object", tool="compose", height=256) |
|
|
|
with gr.Group(): |
|
with gr.Column(): |
|
grounding_text_box = gr.Textbox(label="Enter grounding text for generating a new image") |
|
with gr.Row(): |
|
compose_clear_btn = gr.Button("Clear", elem_id="compose_clear_btn") |
|
compose_btn = gr.Button("Generate", elem_id="compose_btn") |
|
|
|
with gr.Accordion("Advanced Options", open=False): |
|
with gr.Row(): |
|
masked_background_img = gr.Image(label="Background", type='pil', interactive=False, height=256) |
|
inpainted_background_img = gr.Image(label="Inpainted Background", type='pil', interactive=False, height=256) |
|
mask_dilate_slider = gr.Slider(minimum=0.0, maximum=100, value=50, step=2, interactive=True, label="Mask dilation",visible=True, scale=20) |
|
with gr.Row(visible=False): |
|
compose_fix_seed = gr.Checkbox(value=False, label="Fixed seed", visible=False) |
|
compose_rand_seed = gr.Slider(minimum=0, maximum=1000, step=1, value=0, label="Seed", visible=False) |
|
|
|
gligen_inpaint = gr.Tab("Inpaint New Objects") |
|
with gligen_inpaint: |
|
gr.Markdown("Add a new object to the image by drawing its bounding box and giving an instruction. Press the “generate” button repeatedly until you like the image. Press “clear” to accept the image and start over with another object.") |
|
|
|
gligen = gr.Tab("Generate New Image") |
|
with gligen: |
|
gr.Markdown("Generate a new image by giving a language instruction below. Draw a bounding box and give an instruction for any specific objects that need to be grounded in certain places. Hit the “generate” button repeatedly until you get the image you want.") |
|
|
|
with gr.Group(visible=False): |
|
language_instruction = gr.Textbox(label="Language instruction", elem_id='language_instruction', visible=False) |
|
grounding_instruction = gr.Textbox(label="Grounding instruction (Separated by semicolon)", elem_id='grounding_instruction', visible=False) |
|
with gr.Row(): |
|
gligen_clear_btn = gr.Button(value='Clear', visible=False) |
|
gligen_gen_btn = gr.Button(value='Generate', elem_id="generate-btn", visible=False) |
|
|
|
with gr.Group(): |
|
out_imagebox = gr.Image(type="pil", label="Parsed Sketch Pad", height=256, visible=False) |
|
|
|
gligen_adv_options = gr.Accordion("Advanced Options", open=False, visible=False) |
|
with gligen_adv_options: |
|
with gr.Column(): |
|
alpha_sample = gr.Slider(minimum=0, maximum=1.0, step=0.1, value=0.3, label="Scheduled Sampling (τ)") |
|
guidance_scale = gr.Slider(minimum=0, maximum=50, step=0.5, value=7.5, label="Guidance Scale") |
|
|
|
with gr.Row(visible=False): |
|
batch_size = gr.Slider(minimum=1, maximum=4, step=1, value=1, label="Number of Samples", visible=False) |
|
append_grounding = gr.Checkbox(value=True, label="Append grounding instructions to the caption",visible=False) |
|
use_actual_mask = gr.Checkbox(value=False, label="Use actual mask for inpainting", visible=False) |
|
fix_seed = gr.Checkbox(value=False, label="Fixed seed",visible=False) |
|
rand_seed = gr.Slider(minimum=0, maximum=1000, step=1, value=0, label="Seed",visible=False) |
|
use_style_cond = gr.Checkbox(value=False, label="Enable Style Condition",visible=False) |
|
style_cond_image = gr.Image(type="pil", label="Style Condition", visible=False, interactive=False) |
|
|
|
controller = GLIGEN.Controller() |
|
sketch_pad.edit( |
|
GLIGEN.draw, |
|
inputs=[task, sketch_pad, grounding_instruction, sketch_pad_resize_trigger, gligen_state], |
|
outputs=[out_imagebox, sketch_pad_resize_trigger, image_scale, gligen_state], |
|
queue=False, |
|
) |
|
llava_image = gr.Image(label='sketch_pad_image', type='pil', visible=False, interactive=False) |
|
working_image.change(copy_to_llava_input, [working_image], [llava_image]) |
|
sketch_pad.upload( |
|
save_shared_state, |
|
inputs = [sketch_pad, shared_state], |
|
outputs = shared_state).then( |
|
load_shared_state, [shared_state], working_image) |
|
grounding_instruction.change( |
|
GLIGEN.draw, |
|
inputs=[task, sketch_pad, grounding_instruction, sketch_pad_resize_trigger, gligen_state], |
|
outputs=[out_imagebox, sketch_pad_resize_trigger, image_scale, gligen_state], |
|
queue=False, |
|
) |
|
gligen_clear_btn.click( |
|
GLIGEN.clear, |
|
inputs=[task, sketch_pad_trigger, batch_size, gligen_state], |
|
outputs=[sketch_pad, sketch_pad_trigger, out_imagebox, image_scale, gligen_state], |
|
queue=False).then( |
|
clear_grounding_info, gligen_state, [gligen_state, grounding_instruction]).then( |
|
load_shared_state, [shared_state], sketch_pad).then( |
|
update_sketch_pad_trigger, [sketch_pad_trigger, task], sketch_pad_trigger) |
|
task.change( |
|
partial(GLIGEN.clear, switch_task=True), |
|
inputs=[task, sketch_pad_trigger, batch_size, gligen_state], |
|
outputs=[sketch_pad, sketch_pad_trigger, out_imagebox, image_scale, gligen_state], |
|
queue=False).then( |
|
load_shared_state, [shared_state, task], sketch_pad).then( |
|
update_sketch_pad_trigger, [sketch_pad_trigger, task], sketch_pad_trigger).then( |
|
clear_grounding_info, gligen_state, [gligen_state, grounding_instruction]) |
|
sketch_pad_trigger.change( |
|
controller.init_white, |
|
inputs=[init_white_trigger], |
|
outputs=[sketch_pad, image_scale, init_white_trigger], |
|
queue=False) |
|
sketch_pad_resize_trigger.change( |
|
controller.resize_masked, |
|
inputs=[gligen_state], |
|
outputs=[sketch_pad, gligen_state], |
|
queue=False) |
|
|
|
gligen_gen_btn.click( |
|
get_generated_full, |
|
inputs=[ |
|
task, language_instruction, grounding_instruction, sketch_pad, |
|
alpha_sample, guidance_scale, batch_size, |
|
fix_seed, rand_seed, |
|
use_actual_mask, |
|
append_grounding, style_cond_image, |
|
gligen_state], |
|
outputs=[sketch_pad, gligen_state], |
|
queue=True).then( |
|
save_shared_state, [sketch_pad, shared_state], shared_state).then( |
|
load_shared_state, [shared_state], working_image) |
|
|
|
sketch_pad_resize_trigger.change( |
|
None, |
|
None, |
|
sketch_pad_resize_trigger, |
|
_js=GLIGEN.rescale_js, |
|
queue=False) |
|
init_white_trigger.change( |
|
None, |
|
None, |
|
init_white_trigger, |
|
_js=GLIGEN.rescale_js, |
|
queue=False) |
|
use_style_cond.change( |
|
lambda cond: gr.Image.update(visible=cond), |
|
use_style_cond, |
|
style_cond_image, |
|
queue=False) |
|
task.change( |
|
controller.switch_task_hide_cond, |
|
inputs=task, |
|
outputs=[use_style_cond, style_cond_image, alpha_sample, use_actual_mask], |
|
queue=False) |
|
|
|
|
|
with gr.Column(): |
|
gr.Markdown("Chat with the latest image on the left at any time by entering your text below.") |
|
llava_chatbot = gr.Chatbot(elem_id="chatbot", label="LLaVA Chatbot", height=750) |
|
with gr.Column(scale=8): |
|
llava_textbox = gr.Textbox(show_label=False, placeholder="Enter text and press ENTER", container=False) |
|
with gr.Column(scale=1, min_width=60): |
|
llava_submit_btn = gr.Button(value="Submit", visible=False) |
|
|
|
with gr.Row(visible=False): |
|
upvote_btn = gr.Button(value="👍 Upvote", interactive=False, visible=False) |
|
downvote_btn = gr.Button(value="👎 Downvote", interactive=False, visible=False) |
|
flag_btn = gr.Button(value="⚠️ Flag", interactive=False, visible=False) |
|
regenerate_btn = gr.Button(value="🔄 Regenerate", interactive=False, visible=False) |
|
llava_clear_btn = gr.Button(value="🗑️ Clear history", interactive=False, visible=False) |
|
with gr.Accordion("Parameters", open=False, visible=False) as parameter_row: |
|
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, step=0.1, interactive=True, label="Temperature",visible=True) |
|
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, step=0.1, interactive=True, label="Top P",visible=True) |
|
max_output_tokens = gr.Slider(minimum=0, maximum=1024, value=512, step=64, interactive=True, label="Max output tokens",visible=True) |
|
|
|
segment_btn.click(get_segments, inputs=[sketch_pad, segment_task, segment_text, mask_dilate_slider, compose_state], outputs=[segmented_img, masked_background_img, inpainted_background_img, compose_state], queue=True) |
|
segmented_img.select (changed_objects_handler, [mask_dilate_slider, compose_state], [mask_dilate_slider, masked_background_img, compose_state]) |
|
mask_dilate_slider.release(get_base_layer_inpainted, inputs=[compose_state, mask_dilate_slider], outputs=[masked_background_img, inpainted_background_img, compose_state]) |
|
compose_btn.click(get_generated, [grounding_text_box, compose_fix_seed, compose_rand_seed, compose_state], [sketch_pad, compose_state], queue=True).then( |
|
save_shared_state, [sketch_pad, shared_state], shared_state).then( |
|
load_shared_state, [shared_state], working_image) |
|
compose_clear_btn.click(load_shared_state, [shared_state], sketch_pad) |
|
|
|
image_process_mode = gr.Radio( |
|
["Crop", "Resize", "Pad"], |
|
value="Crop", |
|
label="Preprocess for non-square image", |
|
visible=False) |
|
models = LLAVA.get_model_list(args) |
|
model_selector = gr.Dropdown( |
|
choices=models, |
|
value=models[0] if len(models) > 0 else "", |
|
interactive=True, |
|
show_label=False, |
|
container=False, |
|
visible=False) |
|
|
|
btn_list = [upvote_btn, downvote_btn, flag_btn, regenerate_btn, llava_clear_btn] |
|
upvote_btn.click(LLAVA.upvote_last_response, |
|
[llava_state, model_selector], [llava_textbox, upvote_btn, downvote_btn, flag_btn]) |
|
downvote_btn.click(LLAVA.downvote_last_response, |
|
[llava_state, model_selector], [llava_textbox, upvote_btn, downvote_btn, flag_btn]) |
|
flag_btn.click(LLAVA.flag_last_response, |
|
[llava_state, model_selector], [llava_textbox, upvote_btn, downvote_btn, flag_btn]) |
|
regenerate_btn.click(LLAVA.regenerate, [llava_state, image_process_mode], |
|
[llava_state, llava_chatbot, llava_textbox, sketch_pad] + btn_list).then( |
|
LLAVA.http_bot, [llava_state, model_selector, temperature, top_p, max_output_tokens], |
|
[llava_state, llava_chatbot] + btn_list) |
|
llava_clear_btn.click(LLAVA.clear_history, None, [llava_state, llava_chatbot, llava_textbox, llava_image] + btn_list) |
|
|
|
llava_textbox.submit(LLAVA.add_text, [llava_state, llava_textbox, llava_image, image_process_mode], [llava_state, llava_chatbot, llava_textbox, llava_image] + btn_list |
|
).then(LLAVA.http_bot, [llava_state, model_selector, temperature, top_p, max_output_tokens], |
|
[llava_state, llava_chatbot] + btn_list) |
|
llava_submit_btn.click(LLAVA.add_text, [llava_state, llava_textbox, llava_image, image_process_mode], [llava_state, llava_chatbot, llava_textbox, llava_image] + btn_list |
|
).then(LLAVA.http_bot, [llava_state, model_selector, temperature, top_p, max_output_tokens], |
|
[llava_state, llava_chatbot] + btn_list) |
|
|
|
if args.model_list_mode == "once": |
|
raise ValueError(f"Unsupported model list mode: {args.model_list_mode}") |
|
elif args.model_list_mode == "reload": |
|
print('disable for debugging') |
|
demo.load(LLAVA.load_demo_refresh_model_list, inputs=None, |
|
outputs=[llava_state, model_selector] |
|
).then(switch_to_compose, [], [task, out_imagebox, language_instruction, grounding_instruction, gligen_clear_btn, gligen_gen_btn, gligen_adv_options] |
|
).then(GLIGEN.clear, inputs=[task, sketch_pad_trigger, batch_size, gligen_state], |
|
outputs=[sketch_pad, sketch_pad_trigger, out_imagebox, image_scale, gligen_state], queue=False) |
|
|
|
else: |
|
raise ValueError(f"Unknown model list mode: {args.model_list_mode}") |
|
|
|
gligen.select( |
|
switch_to_generate, |
|
inputs=[], |
|
outputs=[task, out_imagebox, language_instruction, grounding_instruction, gligen_clear_btn, gligen_gen_btn, gligen_adv_options]) |
|
gligen_inpaint.select( |
|
switch_to_inpaint, |
|
inputs=[], |
|
outputs=[task, out_imagebox, language_instruction, grounding_instruction, gligen_clear_btn, gligen_gen_btn, gligen_adv_options], |
|
queue=False) |
|
|
|
compose_tab.select( |
|
switch_to_compose, [], [task, out_imagebox, language_instruction, grounding_instruction, gligen_clear_btn, gligen_gen_btn, gligen_adv_options]) |
|
|
|
return demo |
|
|
|
if __name__ == "__main__": |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--host", type=str, default="0.0.0.0") |
|
parser.add_argument("--port", type=int) |
|
parser.add_argument("--controller-url", type=str, default="http://localhost:10000") |
|
parser.add_argument("--concurrency-count", type=int, default=8) |
|
parser.add_argument("--model-list-mode", type=str, default="reload", |
|
choices=["once", "reload"]) |
|
parser.add_argument("--share", action="store_true") |
|
parser.add_argument("--moderate", action="store_true") |
|
parser.add_argument("--embed", action="store_true") |
|
args = parser.parse_args() |
|
LLAVA.set_args(args) |
|
|
|
demo = build_demo() |
|
demo.queue(concurrency_count=1, api_open=True) |
|
demo.launch() |