File size: 34,851 Bytes
ec2c4c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 |
import argparse
import base64
import io
import os
import sys
import cv2
import gradio as gr
import numpy as np
import requests
from functools import partial
from PIL import Image, ImageOps
sys.path.append(os.path.join(os.environ['LLAVA_INTERACTIVE_HOME'], 'GLIGEN/demo'))
import GLIGEN.demo.app as GLIGEN
sys.path.append(os.path.join(os.environ['LLAVA_INTERACTIVE_HOME'], 'SEEM/demo_code'))
import SEEM.demo_code.app as SEEM #must import GLIGEN_app before this. Otherwise, it will hit a protobuf error
sys.path.append(os.path.join(os.environ['LLAVA_INTERACTIVE_HOME'], 'LLaVA'))
import LLaVA.llava.serve.gradio_web_server as LLAVA
class ImageMask(gr.components.Image):
"""
Sets: source="canvas", tool="sketch"
"""
is_template = True
def __init__(self, **kwargs):
super().__init__(source="upload", tool="sketch", interactive=True, **kwargs)
def preprocess(self, x):
if isinstance(x, str):
x = {'image': x, 'mask': x}
elif isinstance(x, dict):
if (x['mask'] is None and x['image'] is None):
x
elif (x['image'] is None):
x['image'] = str(x['mask'])
elif (x['mask'] is None):
x['mask'] = str(x['image']) #not sure why mask/mask is None sometimes, this prevents preprocess crashing
elif x is not None:
assert False, 'Unexpected type {0} in ImageMask preprocess()'.format(type(x))
return super().preprocess(x)
css = """
#compose_btn {
--tw-border-opacity: 1;
border-color: rgb(255 216 180 / var(--tw-border-opacity));
--tw-gradient-from: rgb(255 216 180 / .7);
--tw-gradient-to: rgb(255 216 180 / 0);
--tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to);
--tw-gradient-to: rgb(255 176 102 / .8);
--tw-text-opacity: 1;
color: rgb(238 116 0 / var(--tw-text-opacity));
}
"""
def get_bounding_box(img):
# Get the indices of all non-zero pixels
if (np.any(img) == False): #protect agaist an empty img
return None
non_zero_indices = np.nonzero(img)
# Get the minimum and maximum indices for each axis
min_x = np.min(non_zero_indices[1])
max_x = np.max(non_zero_indices[1])
min_y = np.min(non_zero_indices[0])
max_y = np.max(non_zero_indices[0])
# Return the bounding box as a tuple of (min_x, min_y, max_x, max_y)
return (min_x, min_y, max_x, max_y)
def composite_all_layers(base, objects): #debugging use only
img = base.copy()
for obj in objects:
for i in range(obj['img'].shape[0]):
for j in range(obj['img'].shape[1]):
if obj['img'][i, j, 3] != 0:
img[i, j] = obj['img'][i, j]
return img
def changed_objects_handler(mask_dilate_slider, state, evt: gr.SelectData):
state['move_no'] += 1
pos_x, pos_y = evt.index #obj moved out of scene is signaled by (10000, 10000)
obj_id = 255 - evt.value
print(f"obj {obj_id} moved by {pos_x}, {pos_y}")
img = state['base_layer']
for obj in state['changed_objects']:
if obj['id'] == obj_id:
img = obj['img']
state['changed_objects'].remove(obj)
break
new_img = np.zeros_like(img)
bbox = None
for i in range(img.shape[0]):
for j in range(img.shape[1]):
if img[i, j, 3] == obj_id:
new_i = i + pos_y
new_j = j + pos_x
if new_i >= 0 and new_i < img.shape[0] and new_j >= 0 and new_j < img.shape[1]:
new_img[new_i, new_j] = img[i, j]
img[i, j] = 0
bbox = get_bounding_box(new_img) #returns None if obj moved out of scene
print("bbox: ", bbox)
state['changed_objects'].append({'id': obj_id, 'img': new_img, 'text': state['segment_info'][obj_id], 'box': bbox})
#Enable for debugging only. See if the composited image is correct.
#composed_img_updated = composite_all_layers(state['base_layer'], state['changed_objects'])
#filename = str(f"composited_imge_{state['move_no']}") + ".png"
#cv2.imwrite(filename, composed_img_updated[:, :, 0:3])
return mask_dilate_slider, state['base_layer_masked'], state
def get_base_layer_mask(state):
changed_obj_id = []
for obj in state['changed_objects']:
changed_obj_id.append(obj['id'])
#union of mask of all objects
img = state['orignal_segmented']
mask = np.zeros(img.shape[:2], dtype=np.uint8)
for i in range(img.shape[0]):
for j in range(img.shape[1]):
if img[i, j, 3] in changed_obj_id:
mask[i, j] = 255
state['base_layer_mask'] = mask
mask_image = Image.fromarray(mask)
if (mask_image.mode != "L"):
mask_image = mask_image.convert("L")
mask_image = ImageOps.invert(mask_image)
#mask_image.save("mask_image.png")
img = state['orignal_segmented']
orig_image = Image.fromarray(img[:,:,:3])
orig_image.save("orig_image.png")
transparent = Image.new(orig_image.mode, orig_image.size, (0, 0, 0, 0))
masked_image = Image.composite(orig_image, transparent, mask_image)
#masked_image.save("get_masked_background_image.png")
return masked_image, state
def get_inpainted_background(state, mask_dilate_slider):
# Define the URL of the REST API endpoint
url = "http://localhost:9171/api/v2/image"
img = state['orignal_segmented']
if (isinstance(img, Image.Image) is not True):
img = Image.fromarray(img)
# Create a BytesIO object and save the image there
buffer = io.BytesIO()
img.save(buffer, format="PNG")
# Get the bytes value from the buffer
img_bytes = buffer.getvalue()
encoded_string = base64.b64encode(img_bytes).decode("utf-8")
if (mask_dilate_slider != 0) :
mask = state['base_layer_mask_enlarged']
else:
mask = state['base_layer_mask']
if (isinstance(mask, Image.Image) is not True):
mask = Image.fromarray(mask)
#mask has background as 1, lama needs object to be 1
if (mask.mode != "L"):
mask = mask.convert("L")
mask = ImageOps.invert(mask)
# Create a BytesIO object and save the image there
buffer = io.BytesIO()
mask.save(buffer, format="PNG")
# Get the bytes value from the buffer
mask_bytes = buffer.getvalue()
encoded_string_mask = base64.b64encode(mask_bytes).decode("utf-8")
# Create a POST request to the endpoint
headers = {"Content-Type": "application/json"}
data = {"image": encoded_string, "mask": encoded_string_mask}
response = requests.post(url, headers=headers, json=data)
# Check the status code of the response
if response.status_code == 200:
# The request was successful
print("Image received successfully")
image_data = response.content
# Create a io.BytesIO object from the image data
dataBytesIO = io.BytesIO(image_data)
# Open the image using Image.open()
image = Image.open(dataBytesIO)
#image.save("lama_returned_image.png")
else:
# The request failed
print("Error: HTTP status code {}".format(response.status_code))
print(response.text)
return image
def get_enlarged_masked_background(state, mask_dilate_slider):
mask = state['base_layer_mask']
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (mask_dilate_slider, mask_dilate_slider))
mask_dilated = cv2.dilate(mask, kernel)
#mask the original
mask_image = Image.fromarray(mask_dilated)
if (mask_image.mode != "L"):
mask_image = mask_image.convert("L")
mask_image = ImageOps.invert(mask_image)
state['base_layer_mask_enlarged'] = mask_image
#mask_image.save("enlarged_mask_image.png")
img = state['orignal_segmented']
orig_image = Image.fromarray(img[:,:,:3])
transparent = Image.new(orig_image.mode, orig_image.size, (0, 0, 0, 0))
masked_image = Image.composite(orig_image, transparent, mask_image)
#masked_image.save("enlarged_masked_background_image.png")
return masked_image, state
def get_base_layer_inpainted(state, mask_dilate_slider):
masked_img, state = get_enlarged_masked_background(state, mask_dilate_slider)
inpainted_img = get_inpainted_background(state, mask_dilate_slider)
state['base_layer_inpainted'] = np.array(inpainted_img)
return masked_img, inpainted_img, state
def log_image_and_mask(img, mask): #for debugging use only
counter = 0
for filename in os.listdir('.'):
if filename.startswith('img_') and filename.endswith('.png'):
try:
num = int(filename[4:-4])
if num > counter:
counter = num
except ValueError:
pass
counter += 1
cv2.imwrite(f"img_{counter}.png", img)
cv2.imwrite(f"img_{counter}_mask.png", mask.astype(np.uint8) * 255)
def get_segments (img, task, reftxt, mask_dilate_slider, state):
assert (isinstance(state, dict))
state['orignal_segmented'] = None
state['base_layer'] = None
state['base_layer_masked'] = None
state['base_layer_mask'] = None
state['base_layer_mask_enlarged'] = None
state['base_layer_inpainted'] = None
state['segment_info'] = None
state['seg_boxes'] = {}
state['changed_objects'] = []
state['move_no'] = 0
print("Calling SEEM_app.inference")
if isinstance(img['image'], np.ndarray):
pil_image = Image.fromarray(img['image'])
if isinstance(img['mask'], np.ndarray):
pil_mask = Image.fromarray(img['mask'])
img = {'image': pil_image, 'mask': pil_mask}
img_ret, seg_info = SEEM.inference (img, task, reftxt=reftxt)
#SEEM doesn't always respect the input img dimentions
tgt_size=(img['image'].width, img['image'].height)
img_ret = img_ret.resize(tgt_size, resample=Image.Resampling.NEAREST)
state['orignal_segmented'] = np.array(img_ret).copy()
state['base_layer'] = np.array(img_ret)
state['segment_info'] = seg_info
img_ret_array = np.array(img_ret)
img_ret_array[:,:,3] = 255 - img_ret_array[:,:,3]
#NOTE: if write out as a png, the pixels values get messed up. Same reason the client side colors look weird.
#cv2.imwrite(f"get_segments_img_ret.bmp", img_ret_array)
for obj_id, lable in seg_info.items():
obj_img = (img_ret_array[:,:,3] == 255 - obj_id)
#cv2.imwrite(f"img_{obj_id}.png", obj_img.astype(np.uint8) * 255)
#log_image_and_mask(np.array(img['image']), obj_img)
bbox = get_bounding_box(obj_img)
print(f"obj_id={obj_id}, lable={lable}, bbox={bbox}")
state['seg_boxes'][obj_id] = bbox
#add a special event, obj stays at the original spot
data = {}
data["index"] = (0, 0)
data["value"] = 254 # ==> 1, the only object allowed for now
data["selected"] = True
evt = gr.SelectData(None, data)
mask_dilate_slider, _, state = changed_objects_handler(mask_dilate_slider, state, evt)
state['base_layer_masked'], state = get_base_layer_mask(state)
if (mask_dilate_slider != 0):
enlarged_masked_background, state = get_enlarged_masked_background(state, mask_dilate_slider)
state['base_layer_inpainted'] = np.array(get_inpainted_background(state, mask_dilate_slider))
return Image.fromarray(img_ret_array), enlarged_masked_background, state['base_layer_inpainted'], state
def get_generated(grounding_text, fix_seed, rand_seed, state):
if ('base_layer_inpainted' in state) == False :
raise gr.Error('The segmentation step must be completed first before generating a new image')
inpainted_background_img = state['base_layer_inpainted']
assert inpainted_background_img is not None, 'base layer should be inpainted after segment'
state['boxes'] = []
for items in state['changed_objects']:
if items['box'] is not None:
state['boxes'].append(items['box'])
if (len(state['boxes']) == 0):
if (len(grounding_text) != 0):
grounding_text = []
print("No grounding box found. Grounding text will be ignored.")
return inpainted_background_img.copy(), state, None
print('Calling GLIGEN_app.generate')
print('grounding_text: ', grounding_text)
print(state['boxes'], len(state['boxes']))
assert len(state['boxes']) == 1, 'Only handle one segmented object at a time'
if (len(grounding_text) == 0): #mostly user forgot to drag the object and didn't provide grounding text
raise gr.Error('Please providing grounding text to match the identified object')
out_gen_1, _, _, _, state = GLIGEN.generate(task='Grounded Inpainting', language_instruction='',
grounding_texts=grounding_text, sketch_pad=inpainted_background_img,
alpha_sample=0.3, guidance_scale=7.5, batch_size=1,
fix_seed=fix_seed, rand_seed=rand_seed, use_actual_mask=False, append_grounding=True,
style_cond_image=None, inpainting_image=inpainted_background_img, inpainting_mask=None, state=state)
return out_gen_1['value'], state
def get_generated_full(task, language_instruction, grounding_instruction, sketch_pad,
alpha_sample, guidance_scale, batch_size,
fix_seed, rand_seed,
use_actual_mask,
append_grounding, style_cond_image,
state):
out_gen_1, _, _, _, state = GLIGEN.generate(
task, language_instruction, grounding_instruction, sketch_pad,
alpha_sample, guidance_scale, batch_size,
fix_seed, rand_seed,
use_actual_mask,
append_grounding, style_cond_image,
state)
return out_gen_1['value'], state
def gligen_change_task(state):
if (state['working_image'] is not None):
task = "Grounded Inpainting"
else:
task = "Grounded Generation"
return task
def clear_sketch_pad_mask(sketch_pad_image):
sketch_pad = ImageMask.update(value=sketch_pad_image, visible=True)
return sketch_pad
def save_shared_state(img, state):
if (isinstance(img, dict) and 'image' in img):
state['working_image'] = img['image']
else:
state['working_image'] = img
return state
def load_shared_state(state, task = None):
if (task == "Grounded Generation"):
return None
else:
return state['working_image']
def update_shared_state(state, task):
if (task == "Grounded Generation"):
state['working_image'] = None
return state
def update_sketch_pad_trigger(sketch_pad_trigger, task):
if (task == "Grounded Generation"):
sketch_pad_trigger = sketch_pad_trigger + 1
return sketch_pad_trigger
def clear_grounding_info(state):
state['boxes'] = []
state['masks'] = []
return state, ''
def switch_to_generate ():
task = "Grounded Generation"
return task, gr.Image.update(visible=True), gr.Textbox.update(visible=True), gr.Textbox.update(visible=True), gr.Button.update(visible=True), gr.Button.update(visible=True), gr.Accordion.update(visible=True)
def switch_to_inpaint ():
task = "Grounded Inpainting"
return task, gr.Image.update(visible=True), gr.Textbox.update(visible=False), gr.Textbox.update(visible=True), gr.Button.update(visible=True), gr.Button.update(visible=True), gr.Accordion.update(visible=True)
def switch_to_compose ():
task = "Compose"
return task, gr.Image.update(visible=False), gr.Textbox.update(visible=False), gr.Textbox.update(visible=False), gr.Button.update(visible=False), gr.Button.update(visible=False), gr.Accordion.update(visible=False)
def copy_to_llava_input(img):
print('WORKING IMAGE CHANGED!!!!')
if (isinstance(img, Image.Image) is not True):
img = Image.fromarray(img)
return img
def build_demo():
demo = gr.Blocks(title="🌋 LLaVA-Interactive", css=css+GLIGEN.css)
with demo:
compose_state = gr.State({'boxes': [], 'move_no': 0, 'base_layer': None, 'segment_info': None, 'seg_boxes': {}, 'changed_objects': []})
llava_state = gr.State()
shared_state = gr.State({'working_image': None})
gligen_state = gr.State({'draw_box': True})
gr.Markdown('<h1 style="text-align: center;"></h1>')
gr.Markdown('<h1 style="text-align: center;">LLaVA Interactive</h1>')
gr.Markdown('<h1 style="text-align: center;"></h1>')
gr.Markdown('**Experience interactive multimodal chatting and image manipulation. Select a tab for your task and follow the instructions. Switch tasks anytime and ask questions in the chat window.**')
with gr.Row(visible=False):
working_image = gr.Image(label="Working Image", type="numpy", elem_id="working_image", visible=False, interactive=False) #hidden image to save current working image
#for gligen
sketch_pad_trigger = gr.Number(value=0, visible=False)
sketch_pad_resize_trigger = gr.Number(value=0, visible=False)
init_white_trigger = gr.Number(value=0, visible=False)
image_scale = gr.Number(value=0, elem_id="image_scale", visible=False)
task = gr.Radio(
choices=["Grounded Generation", 'Grounded Inpainting', 'Compose'],
type="value",
value="Grounded Inpainting",
label="Task",
visible=False
)
with gr.Row(equal_height=False):
with gr.Column():
with gr.Row():
sketch_pad = ImageMask(label="Sketch Pad", type="numpy", shape=(512, 512), width=384, elem_id="img2img_image", brush_radius=20.0, visible=True)
compose_tab = gr.Tab("Remove or Change Objects")
with compose_tab:
gr.Markdown("Segment an object by drawing a stroke or giving a referring text. Then press the segment button. Drag the highlighted object to move it. To remove it, drag it out of the frame. To replace it with a new object, give an instruction only if the object is removed and press the generate button until you like the image.")
with gr.Row().style(equal_height=False):
with gr.Column():
with gr.Group():
with gr.Column():
with gr.Row():
segment_task= gr.Radio(["Stroke", "Text"], value="Stroke", label='Choose segmentation method')
segment_text = gr.Textbox(label="Enter referring text")
segment_btn = gr.Button("Segment", elem_id="segment-btn")
with gr.Group():
segmented_img = gr.Image(label="Move or delete object", tool="compose", height=256)
with gr.Group():
with gr.Column():
grounding_text_box = gr.Textbox(label="Enter grounding text for generating a new image")
with gr.Row():
compose_clear_btn = gr.Button("Clear", elem_id="compose_clear_btn")
compose_btn = gr.Button("Generate", elem_id="compose_btn")
with gr.Accordion("Advanced Options", open=False):
with gr.Row():
masked_background_img = gr.Image(label="Background", type='pil', interactive=False, height=256)
inpainted_background_img = gr.Image(label="Inpainted Background", type='pil', interactive=False, height=256)
mask_dilate_slider = gr.Slider(minimum=0.0, maximum=100, value=50, step=2, interactive=True, label="Mask dilation",visible=True, scale=20)
with gr.Row(visible=False):
compose_fix_seed = gr.Checkbox(value=False, label="Fixed seed", visible=False)
compose_rand_seed = gr.Slider(minimum=0, maximum=1000, step=1, value=0, label="Seed", visible=False)
gligen_inpaint = gr.Tab("Inpaint New Objects")
with gligen_inpaint:
gr.Markdown("Add a new object to the image by drawing its bounding box and giving an instruction. Press the “generate” button repeatedly until you like the image. Press “clear” to accept the image and start over with another object.")
gligen = gr.Tab("Generate New Image")
with gligen:
gr.Markdown("Generate a new image by giving a language instruction below. Draw a bounding box and give an instruction for any specific objects that need to be grounded in certain places. Hit the “generate” button repeatedly until you get the image you want.")
with gr.Group(visible=False):
language_instruction = gr.Textbox(label="Language instruction", elem_id='language_instruction', visible=False)
grounding_instruction = gr.Textbox(label="Grounding instruction (Separated by semicolon)", elem_id='grounding_instruction', visible=False)
with gr.Row():
gligen_clear_btn = gr.Button(value='Clear', visible=False)
gligen_gen_btn = gr.Button(value='Generate', elem_id="generate-btn", visible=False)
with gr.Group():
out_imagebox = gr.Image(type="pil", label="Parsed Sketch Pad", height=256, visible=False)
gligen_adv_options = gr.Accordion("Advanced Options", open=False, visible=False)
with gligen_adv_options:
with gr.Column():
alpha_sample = gr.Slider(minimum=0, maximum=1.0, step=0.1, value=0.3, label="Scheduled Sampling (τ)")
guidance_scale = gr.Slider(minimum=0, maximum=50, step=0.5, value=7.5, label="Guidance Scale")
with gr.Row(visible=False):
batch_size = gr.Slider(minimum=1, maximum=4, step=1, value=1, label="Number of Samples", visible=False)
append_grounding = gr.Checkbox(value=True, label="Append grounding instructions to the caption",visible=False)
use_actual_mask = gr.Checkbox(value=False, label="Use actual mask for inpainting", visible=False)
fix_seed = gr.Checkbox(value=False, label="Fixed seed",visible=False)
rand_seed = gr.Slider(minimum=0, maximum=1000, step=1, value=0, label="Seed",visible=False)
use_style_cond = gr.Checkbox(value=False, label="Enable Style Condition",visible=False)
style_cond_image = gr.Image(type="pil", label="Style Condition", visible=False, interactive=False)
controller = GLIGEN.Controller()
sketch_pad.edit(
GLIGEN.draw,
inputs=[task, sketch_pad, grounding_instruction, sketch_pad_resize_trigger, gligen_state],
outputs=[out_imagebox, sketch_pad_resize_trigger, image_scale, gligen_state],
queue=False,
)
llava_image = gr.Image(label='sketch_pad_image', type='pil', visible=False, interactive=False)
working_image.change(copy_to_llava_input, [working_image], [llava_image])
sketch_pad.upload(
save_shared_state,
inputs = [sketch_pad, shared_state],
outputs = shared_state).then(
load_shared_state, [shared_state], working_image)
grounding_instruction.change(
GLIGEN.draw,
inputs=[task, sketch_pad, grounding_instruction, sketch_pad_resize_trigger, gligen_state],
outputs=[out_imagebox, sketch_pad_resize_trigger, image_scale, gligen_state],
queue=False,
)
gligen_clear_btn.click(
GLIGEN.clear,
inputs=[task, sketch_pad_trigger, batch_size, gligen_state],
outputs=[sketch_pad, sketch_pad_trigger, out_imagebox, image_scale, gligen_state],
queue=False).then(
clear_grounding_info, gligen_state, [gligen_state, grounding_instruction]).then(
load_shared_state, [shared_state], sketch_pad).then(
update_sketch_pad_trigger, [sketch_pad_trigger, task], sketch_pad_trigger)
task.change(
partial(GLIGEN.clear, switch_task=True),
inputs=[task, sketch_pad_trigger, batch_size, gligen_state],
outputs=[sketch_pad, sketch_pad_trigger, out_imagebox, image_scale, gligen_state],
queue=False).then(
load_shared_state, [shared_state, task], sketch_pad).then(
update_sketch_pad_trigger, [sketch_pad_trigger, task], sketch_pad_trigger).then(
clear_grounding_info, gligen_state, [gligen_state, grounding_instruction])
sketch_pad_trigger.change(
controller.init_white,
inputs=[init_white_trigger],
outputs=[sketch_pad, image_scale, init_white_trigger],
queue=False)
sketch_pad_resize_trigger.change(
controller.resize_masked,
inputs=[gligen_state],
outputs=[sketch_pad, gligen_state],
queue=False)
gligen_gen_btn.click(
get_generated_full,
inputs=[
task, language_instruction, grounding_instruction, sketch_pad,
alpha_sample, guidance_scale, batch_size,
fix_seed, rand_seed,
use_actual_mask,
append_grounding, style_cond_image,
gligen_state],
outputs=[sketch_pad, gligen_state],
queue=True).then(
save_shared_state, [sketch_pad, shared_state], shared_state).then(
load_shared_state, [shared_state], working_image)
sketch_pad_resize_trigger.change(
None,
None,
sketch_pad_resize_trigger,
_js=GLIGEN.rescale_js,
queue=False)
init_white_trigger.change(
None,
None,
init_white_trigger,
_js=GLIGEN.rescale_js,
queue=False)
use_style_cond.change(
lambda cond: gr.Image.update(visible=cond),
use_style_cond,
style_cond_image,
queue=False)
task.change(
controller.switch_task_hide_cond,
inputs=task,
outputs=[use_style_cond, style_cond_image, alpha_sample, use_actual_mask],
queue=False)
with gr.Column():
gr.Markdown("Chat with the latest image on the left at any time by entering your text below.")
llava_chatbot = gr.Chatbot(elem_id="chatbot", label="LLaVA Chatbot", height=750)
with gr.Column(scale=8):
llava_textbox = gr.Textbox(show_label=False, placeholder="Enter text and press ENTER", container=False)
with gr.Column(scale=1, min_width=60):
llava_submit_btn = gr.Button(value="Submit", visible=False)
with gr.Row(visible=False):
upvote_btn = gr.Button(value="👍 Upvote", interactive=False, visible=False)
downvote_btn = gr.Button(value="👎 Downvote", interactive=False, visible=False)
flag_btn = gr.Button(value="⚠️ Flag", interactive=False, visible=False)
regenerate_btn = gr.Button(value="🔄 Regenerate", interactive=False, visible=False)
llava_clear_btn = gr.Button(value="🗑️ Clear history", interactive=False, visible=False)
with gr.Accordion("Parameters", open=False, visible=False) as parameter_row:
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, step=0.1, interactive=True, label="Temperature",visible=True)
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, step=0.1, interactive=True, label="Top P",visible=True)
max_output_tokens = gr.Slider(minimum=0, maximum=1024, value=512, step=64, interactive=True, label="Max output tokens",visible=True)
segment_btn.click(get_segments, inputs=[sketch_pad, segment_task, segment_text, mask_dilate_slider, compose_state], outputs=[segmented_img, masked_background_img, inpainted_background_img, compose_state], queue=True)
segmented_img.select (changed_objects_handler, [mask_dilate_slider, compose_state], [mask_dilate_slider, masked_background_img, compose_state])
mask_dilate_slider.release(get_base_layer_inpainted, inputs=[compose_state, mask_dilate_slider], outputs=[masked_background_img, inpainted_background_img, compose_state])
compose_btn.click(get_generated, [grounding_text_box, compose_fix_seed, compose_rand_seed, compose_state], [sketch_pad, compose_state], queue=True).then(
save_shared_state, [sketch_pad, shared_state], shared_state).then(
load_shared_state, [shared_state], working_image)
compose_clear_btn.click(load_shared_state, [shared_state], sketch_pad)
image_process_mode = gr.Radio(
["Crop", "Resize", "Pad"],
value="Crop",
label="Preprocess for non-square image",
visible=False)
models = LLAVA.get_model_list(args)
model_selector = gr.Dropdown(
choices=models,
value=models[0] if len(models) > 0 else "",
interactive=True,
show_label=False,
container=False,
visible=False)
btn_list = [upvote_btn, downvote_btn, flag_btn, regenerate_btn, llava_clear_btn]
upvote_btn.click(LLAVA.upvote_last_response,
[llava_state, model_selector], [llava_textbox, upvote_btn, downvote_btn, flag_btn])
downvote_btn.click(LLAVA.downvote_last_response,
[llava_state, model_selector], [llava_textbox, upvote_btn, downvote_btn, flag_btn])
flag_btn.click(LLAVA.flag_last_response,
[llava_state, model_selector], [llava_textbox, upvote_btn, downvote_btn, flag_btn])
regenerate_btn.click(LLAVA.regenerate, [llava_state, image_process_mode],
[llava_state, llava_chatbot, llava_textbox, sketch_pad] + btn_list).then(
LLAVA.http_bot, [llava_state, model_selector, temperature, top_p, max_output_tokens],
[llava_state, llava_chatbot] + btn_list)
llava_clear_btn.click(LLAVA.clear_history, None, [llava_state, llava_chatbot, llava_textbox, llava_image] + btn_list)
llava_textbox.submit(LLAVA.add_text, [llava_state, llava_textbox, llava_image, image_process_mode], [llava_state, llava_chatbot, llava_textbox, llava_image] + btn_list
).then(LLAVA.http_bot, [llava_state, model_selector, temperature, top_p, max_output_tokens],
[llava_state, llava_chatbot] + btn_list)
llava_submit_btn.click(LLAVA.add_text, [llava_state, llava_textbox, llava_image, image_process_mode], [llava_state, llava_chatbot, llava_textbox, llava_image] + btn_list
).then(LLAVA.http_bot, [llava_state, model_selector, temperature, top_p, max_output_tokens],
[llava_state, llava_chatbot] + btn_list)
if args.model_list_mode == "once":
raise ValueError(f"Unsupported model list mode: {args.model_list_mode}")
elif args.model_list_mode == "reload":
print('disable for debugging')
demo.load(LLAVA.load_demo_refresh_model_list, inputs=None,
outputs=[llava_state, model_selector]
).then(switch_to_compose, [], [task, out_imagebox, language_instruction, grounding_instruction, gligen_clear_btn, gligen_gen_btn, gligen_adv_options] #first tab show doesn't need any
).then(GLIGEN.clear, inputs=[task, sketch_pad_trigger, batch_size, gligen_state],
outputs=[sketch_pad, sketch_pad_trigger, out_imagebox, image_scale, gligen_state], queue=False)
else:
raise ValueError(f"Unknown model list mode: {args.model_list_mode}")
gligen.select(
switch_to_generate,
inputs=[],
outputs=[task, out_imagebox, language_instruction, grounding_instruction, gligen_clear_btn, gligen_gen_btn, gligen_adv_options])
gligen_inpaint.select(
switch_to_inpaint,
inputs=[],
outputs=[task, out_imagebox, language_instruction, grounding_instruction, gligen_clear_btn, gligen_gen_btn, gligen_adv_options],
queue=False)
compose_tab.select(
switch_to_compose, [], [task, out_imagebox, language_instruction, grounding_instruction, gligen_clear_btn, gligen_gen_btn, gligen_adv_options])
return demo
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="0.0.0.0")
parser.add_argument("--port", type=int)
parser.add_argument("--controller-url", type=str, default="http://localhost:10000")
parser.add_argument("--concurrency-count", type=int, default=8)
parser.add_argument("--model-list-mode", type=str, default="reload",
choices=["once", "reload"])
parser.add_argument("--share", action="store_true")
parser.add_argument("--moderate", action="store_true")
parser.add_argument("--embed", action="store_true")
args = parser.parse_args()
LLAVA.set_args(args)
demo = build_demo()
demo.queue(concurrency_count=1, api_open=False)
demo.launch() |