Spaces:
Runtime error
Runtime error
Commit
·
4cdda95
1
Parent(s):
be8111b
update
Browse files- app/main.py +52 -55
- app/model.py +2 -3
- requirements.txt +1 -4
app/main.py
CHANGED
@@ -5,33 +5,11 @@ try:
|
|
5 |
import streamlit as st
|
6 |
import re
|
7 |
import streamlit as st
|
8 |
-
from transformers import BertTokenizer
|
9 |
-
from model import IndoBERTBiLSTM
|
10 |
except Exception as e:
|
11 |
print(e)
|
12 |
-
|
13 |
-
STYLE = """
|
14 |
-
<style>
|
15 |
-
img {
|
16 |
-
max-width: 100%;
|
17 |
-
}
|
18 |
-
</style>
|
19 |
-
"""
|
20 |
-
|
21 |
-
footer="""<style>
|
22 |
-
.footer {
|
23 |
-
position: fixed;
|
24 |
-
left: 0;
|
25 |
-
bottom: 0;
|
26 |
-
width: 100%;
|
27 |
-
color: #e7e7e7;
|
28 |
-
text-align: center;
|
29 |
-
}
|
30 |
-
</style>
|
31 |
-
<div class="footer">
|
32 |
-
<p>CUDA enabled</p>
|
33 |
-
</div>
|
34 |
-
"""
|
35 |
# Config
|
36 |
MAX_SEQ_LEN = 128
|
37 |
MODELS_PATH = "kadabengaran/IndoBERT-BiLSTM-Useful-App-Review"
|
@@ -59,10 +37,16 @@ def load_tokenizer(model_path):
|
|
59 |
return tokenizer
|
60 |
|
61 |
def remove_special_characters(text):
|
62 |
-
|
63 |
-
text = re.sub(r"\s+", " ", text) # replace multiple whitespace characters with a single space
|
64 |
-
text = re.sub(r'[0-9]', ' ', text) #remove number
|
65 |
text = text.lower()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
return text
|
67 |
|
68 |
def preprocess(text, tokenizer, max_seq=MAX_SEQ_LEN):
|
@@ -76,7 +60,7 @@ def load_model():
|
|
76 |
model = IndoBERTBiLSTM.from_pretrained(MODELS_PATH)
|
77 |
return model
|
78 |
|
79 |
-
def
|
80 |
|
81 |
if device.type == 'cuda':
|
82 |
model.cuda()
|
@@ -95,16 +79,16 @@ def predict_single(text, model, tokenizer, device):
|
|
95 |
test_ids = torch.cat(test_ids, dim=0)
|
96 |
test_attention_mask = torch.cat(test_attention_mask, dim=0)
|
97 |
|
98 |
-
# Forward pass, calculate logit
|
99 |
with torch.no_grad():
|
100 |
outputs = model(test_ids.to(device),
|
101 |
test_attention_mask.to(device))
|
102 |
print("output ", outputs)
|
103 |
-
|
104 |
-
print("output ",
|
105 |
-
return
|
106 |
|
107 |
-
def
|
108 |
|
109 |
if device.type == 'cuda':
|
110 |
model.cuda()
|
@@ -112,29 +96,26 @@ def predict_multiple(data, model, tokenizer, device):
|
|
112 |
input_ids = []
|
113 |
attention_masks = []
|
114 |
for row in data.tolist():
|
115 |
-
# Apply remove_special_characters function to title column
|
116 |
text = remove_special_characters(row)
|
117 |
text = preprocess(text, tokenizer)
|
118 |
input_ids.append(text['input_ids'])
|
119 |
attention_masks.append(text['attention_mask'])
|
120 |
|
121 |
-
|
122 |
|
123 |
with torch.no_grad():
|
124 |
for i in range(len(input_ids)):
|
125 |
test_ids = input_ids[i]
|
126 |
test_attention_mask = attention_masks[i]
|
127 |
outputs = model(test_ids.to(device), test_attention_mask.to(device))
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
|
132 |
-
return
|
133 |
|
134 |
tab_labels = ["Single Input", "Multiple Input"]
|
135 |
class App:
|
136 |
-
|
137 |
-
print("Loading All")
|
138 |
def __init__(self):
|
139 |
self.fileTypes = ["csv"]
|
140 |
self.default_tab_selected = tab_labels[0]
|
@@ -153,6 +134,7 @@ class App:
|
|
153 |
</div>
|
154 |
"""
|
155 |
st.markdown(html_temp, unsafe_allow_html=True)
|
|
|
156 |
self.render_tabs()
|
157 |
st.divider()
|
158 |
self.render_process_button(model, tokenizer, device)
|
@@ -165,7 +147,8 @@ class App:
|
|
165 |
def render_tabs(self):
|
166 |
tab_selected = st.session_state.get('tab_selected', self.default_tab_selected)
|
167 |
tab_selected = st.sidebar.radio("Select Input Type", tab_labels)
|
168 |
-
|
|
|
169 |
|
170 |
if tab_selected == tab_labels[0]:
|
171 |
self.render_single_input()
|
@@ -181,9 +164,9 @@ class App:
|
|
181 |
"""
|
182 |
Upload File
|
183 |
"""
|
184 |
-
st.markdown(
|
185 |
-
file = st.file_uploader("
|
186 |
-
|
187 |
|
188 |
if not file:
|
189 |
st.info("Please upload a file of type: " + ", ".join(self.fileTypes))
|
@@ -194,7 +177,6 @@ class App:
|
|
194 |
placeholder = st.empty()
|
195 |
placeholder.dataframe(data.head(10))
|
196 |
|
197 |
-
|
198 |
header_list = data.columns.tolist()
|
199 |
header_list.insert(0, "---------- select column -------------")
|
200 |
ques = st.radio("Select column to process", header_list, index=0)
|
@@ -212,18 +194,20 @@ class App:
|
|
212 |
if st.session_state.tab_selected == tab_labels[0]:
|
213 |
input_text = self.input_text
|
214 |
if input_text:
|
215 |
-
|
216 |
-
|
217 |
-
st.write("
|
|
|
|
|
218 |
elif st.session_state.tab_selected == tab_labels[1]:
|
219 |
df_process = self.csv_process
|
220 |
if df_process is not None:
|
221 |
-
|
222 |
|
223 |
st.divider()
|
224 |
st.write("Classification Result")
|
225 |
input_file = self.csv_input
|
226 |
-
input_file["classification_result"] =
|
227 |
st.dataframe(input_file.head(10))
|
228 |
st.download_button(
|
229 |
label="Download Result",
|
@@ -231,10 +215,23 @@ class App:
|
|
231 |
file_name="classification_result.csv",
|
232 |
mime="text/csv",
|
233 |
)
|
|
|
|
|
234 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
235 |
|
236 |
if __name__ == "__main__":
|
237 |
app = App()
|
238 |
-
app.run()
|
239 |
-
if USE_CUDA:
|
240 |
-
st.markdown(footer,unsafe_allow_html=True)
|
|
|
5 |
import streamlit as st
|
6 |
import re
|
7 |
import streamlit as st
|
8 |
+
from transformers import BertTokenizer
|
9 |
+
from model import IndoBERTBiLSTM
|
10 |
except Exception as e:
|
11 |
print(e)
|
12 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
# Config
|
14 |
MAX_SEQ_LEN = 128
|
15 |
MODELS_PATH = "kadabengaran/IndoBERT-BiLSTM-Useful-App-Review"
|
|
|
37 |
return tokenizer
|
38 |
|
39 |
def remove_special_characters(text):
|
40 |
+
# case folding
|
|
|
|
|
41 |
text = text.lower()
|
42 |
+
|
43 |
+
# menghapus karakter khusus
|
44 |
+
text = re.sub(r'[^a-zA-Z0-9\s]', ' ', text)
|
45 |
+
text = re.sub(r'[0-9]', ' ', text)
|
46 |
+
|
47 |
+
# replace multiple whitespace characters with a single space
|
48 |
+
text = re.sub(r"\s+", " ", text)
|
49 |
+
|
50 |
return text
|
51 |
|
52 |
def preprocess(text, tokenizer, max_seq=MAX_SEQ_LEN):
|
|
|
60 |
model = IndoBERTBiLSTM.from_pretrained(MODELS_PATH)
|
61 |
return model
|
62 |
|
63 |
+
def classify_single(text, model, tokenizer, device):
|
64 |
|
65 |
if device.type == 'cuda':
|
66 |
model.cuda()
|
|
|
79 |
test_ids = torch.cat(test_ids, dim=0)
|
80 |
test_attention_mask = torch.cat(test_attention_mask, dim=0)
|
81 |
|
82 |
+
# Forward pass, calculate logit
|
83 |
with torch.no_grad():
|
84 |
outputs = model(test_ids.to(device),
|
85 |
test_attention_mask.to(device))
|
86 |
print("output ", outputs)
|
87 |
+
result = torch.argmax(outputs, dim=-1)
|
88 |
+
print("output ", result)
|
89 |
+
return result.item()
|
90 |
|
91 |
+
def classify_multiple(data, model, tokenizer, device):
|
92 |
|
93 |
if device.type == 'cuda':
|
94 |
model.cuda()
|
|
|
96 |
input_ids = []
|
97 |
attention_masks = []
|
98 |
for row in data.tolist():
|
|
|
99 |
text = remove_special_characters(row)
|
100 |
text = preprocess(text, tokenizer)
|
101 |
input_ids.append(text['input_ids'])
|
102 |
attention_masks.append(text['attention_mask'])
|
103 |
|
104 |
+
result_list = []
|
105 |
|
106 |
with torch.no_grad():
|
107 |
for i in range(len(input_ids)):
|
108 |
test_ids = input_ids[i]
|
109 |
test_attention_mask = attention_masks[i]
|
110 |
outputs = model(test_ids.to(device), test_attention_mask.to(device))
|
111 |
+
result = torch.argmax(outputs, dim= -1)
|
112 |
+
result_label = get_key(result.item(), LABELS)
|
113 |
+
result.append(result_label)
|
114 |
|
115 |
+
return result_list
|
116 |
|
117 |
tab_labels = ["Single Input", "Multiple Input"]
|
118 |
class App:
|
|
|
|
|
119 |
def __init__(self):
|
120 |
self.fileTypes = ["csv"]
|
121 |
self.default_tab_selected = tab_labels[0]
|
|
|
134 |
</div>
|
135 |
"""
|
136 |
st.markdown(html_temp, unsafe_allow_html=True)
|
137 |
+
st.markdown("")
|
138 |
self.render_tabs()
|
139 |
st.divider()
|
140 |
self.render_process_button(model, tokenizer, device)
|
|
|
147 |
def render_tabs(self):
|
148 |
tab_selected = st.session_state.get('tab_selected', self.default_tab_selected)
|
149 |
tab_selected = st.sidebar.radio("Select Input Type", tab_labels)
|
150 |
+
if USE_CUDA:
|
151 |
+
st.sidebar.markdown(footer,unsafe_allow_html=True)
|
152 |
|
153 |
if tab_selected == tab_labels[0]:
|
154 |
self.render_single_input()
|
|
|
164 |
"""
|
165 |
Upload File
|
166 |
"""
|
167 |
+
st.markdown("Upload file")
|
168 |
+
file = st.file_uploader("To ensure a smooth process, please use a maximum of 500 rows of data in the CSV file.",
|
169 |
+
type=self.fileTypes)
|
170 |
|
171 |
if not file:
|
172 |
st.info("Please upload a file of type: " + ", ".join(self.fileTypes))
|
|
|
177 |
placeholder = st.empty()
|
178 |
placeholder.dataframe(data.head(10))
|
179 |
|
|
|
180 |
header_list = data.columns.tolist()
|
181 |
header_list.insert(0, "---------- select column -------------")
|
182 |
ques = st.radio("Select column to process", header_list, index=0)
|
|
|
194 |
if st.session_state.tab_selected == tab_labels[0]:
|
195 |
input_text = self.input_text
|
196 |
if input_text:
|
197 |
+
classification = classify_single(input_text, model, tokenizer, device)
|
198 |
+
classification_label = get_key(classification, LABELS)
|
199 |
+
st.write("Classification result:", classification_label)
|
200 |
+
else:
|
201 |
+
st.warning('Please enter text to process', icon="⚠️")
|
202 |
elif st.session_state.tab_selected == tab_labels[1]:
|
203 |
df_process = self.csv_process
|
204 |
if df_process is not None:
|
205 |
+
classification = classify_multiple(df_process, model, tokenizer, device)
|
206 |
|
207 |
st.divider()
|
208 |
st.write("Classification Result")
|
209 |
input_file = self.csv_input
|
210 |
+
input_file["classification_result"] = classification
|
211 |
st.dataframe(input_file.head(10))
|
212 |
st.download_button(
|
213 |
label="Download Result",
|
|
|
215 |
file_name="classification_result.csv",
|
216 |
mime="text/csv",
|
217 |
)
|
218 |
+
else:
|
219 |
+
st.warning('Please upload a file to process', icon="⚠️")
|
220 |
|
221 |
+
footer="""<style>
|
222 |
+
.footer {
|
223 |
+
position: fixed;
|
224 |
+
left: 10;
|
225 |
+
bottom: 0;
|
226 |
+
width: 100%;
|
227 |
+
color: #ffa9365e;
|
228 |
+
}
|
229 |
+
</style>
|
230 |
+
<div class="footer">
|
231 |
+
<p>CUDA enabled</p>
|
232 |
+
</div>
|
233 |
+
"""
|
234 |
|
235 |
if __name__ == "__main__":
|
236 |
app = App()
|
237 |
+
app.run()
|
|
|
|
app/model.py
CHANGED
@@ -13,10 +13,9 @@ device = get_device()
|
|
13 |
if device.type == 'cuda':
|
14 |
USE_CUDA = True
|
15 |
|
16 |
-
|
17 |
HIDDEN_DIM = 768
|
18 |
OUTPUT_DIM = 2 # 2 if Binary Classification
|
19 |
-
N_LAYERS = 1 # 2
|
20 |
BIDIRECTIONAL = True
|
21 |
DROPOUT = 0.2 # 0.2
|
22 |
|
@@ -29,7 +28,7 @@ class IndoBERTBiLSTM(PreTrainedModel):
|
|
29 |
self.hidden_dim = HIDDEN_DIM
|
30 |
self.bidirectional = BIDIRECTIONAL
|
31 |
|
32 |
-
self.bert = BertModel.from_pretrained(
|
33 |
self.lstm = nn.LSTM(input_size=self.bert.config.hidden_size,
|
34 |
hidden_size=self.hidden_dim,
|
35 |
num_layers=self.n_layers,
|
|
|
13 |
if device.type == 'cuda':
|
14 |
USE_CUDA = True
|
15 |
|
16 |
+
base_bert = 'indobenchmark/indobert-base-p2'
|
17 |
HIDDEN_DIM = 768
|
18 |
OUTPUT_DIM = 2 # 2 if Binary Classification
|
|
|
19 |
BIDIRECTIONAL = True
|
20 |
DROPOUT = 0.2 # 0.2
|
21 |
|
|
|
28 |
self.hidden_dim = HIDDEN_DIM
|
29 |
self.bidirectional = BIDIRECTIONAL
|
30 |
|
31 |
+
self.bert = BertModel.from_pretrained(base_bert)
|
32 |
self.lstm = nn.LSTM(input_size=self.bert.config.hidden_size,
|
33 |
hidden_size=self.hidden_dim,
|
34 |
num_layers=self.n_layers,
|
requirements.txt
CHANGED
@@ -1,6 +1,3 @@
|
|
1 |
streamlit
|
2 |
torch
|
3 |
-
|
4 |
-
transformers
|
5 |
-
tokenizers
|
6 |
-
pickleshare
|
|
|
1 |
streamlit
|
2 |
torch
|
3 |
+
transformers
|
|
|
|
|
|