Spaces:
Sleeping
Sleeping
add app
Browse files
app.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Load from local checkpoint
|
6 |
+
# or whatever your checkpoint number is
|
7 |
+
model_id = "/Users/kennyho/Dev/k-code-experiments/political-bert-classifier/src/results/checkpoint-2391"
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
9 |
+
'bert-base-uncased') # Original tokenizer
|
10 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_id)
|
11 |
+
|
12 |
+
|
13 |
+
def predict(text):
|
14 |
+
# Tokenize and predict
|
15 |
+
inputs = tokenizer(text,
|
16 |
+
truncation=True,
|
17 |
+
padding=True,
|
18 |
+
max_length=64,
|
19 |
+
return_tensors="pt")
|
20 |
+
|
21 |
+
with torch.no_grad():
|
22 |
+
outputs = model(**inputs)
|
23 |
+
probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
24 |
+
prediction = probs.argmax(-1).item()
|
25 |
+
confidence = probs[0][prediction].item()
|
26 |
+
return probs
|
27 |
+
|
28 |
+
label_map = {0: 'Left', 1: 'Right', 2: 'Centrist'}
|
29 |
+
return f"{label_map[prediction]} (Confidence: {confidence:.2%})"
|
30 |
+
|
31 |
+
|
32 |
+
# Create the interface
|
33 |
+
demo = gr.Interface(
|
34 |
+
fn=predict,
|
35 |
+
inputs=gr.Textbox(lines=4, placeholder="Enter text to analyze..."),
|
36 |
+
outputs="text",
|
37 |
+
title="Political Text Classifier",
|
38 |
+
description="Classify political text as Left, Right, or Centrist"
|
39 |
+
)
|
40 |
+
|
41 |
+
demo.launch()
|