import gradio as gr from fastai.learner import load_learner from fastai.vision.all import PILImage def label_func(f): return f[0].isupper() learn = load_learner('export.pkl') labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred, pred_idx, probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} title = "Pet Breed Classifier" description = "A pet breed classifier trained on the Oxford Pets dataset with fastai. Created as a demo for Gradio and HuggingFace Spaces." article = "
" examples = ['siamese.jpg'] interpretation = 'default' enable_queue = True gr.Interface( fn=predict, inputs=gr.Image(type="filepath"), outputs=gr.Label(num_top_classes=3) ).launch(share=True)