File size: 7,809 Bytes
a3e05e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import torch
import torch.nn as nn
from functools import lru_cache
import copy


@lru_cache(maxsize=1)
def get_cached_zeros(numel, device="cpu", dtype=torch.float32):
    return torch.zeros(numel, device=device, dtype=dtype)

class StreamingODEWrapperForPrefix(nn.Module):
    def __init__(self, net, x_mask, x_cond, use_cfg=False, use_cfg_rescale=True, cfg_init=1.0, cfg_scale=4.0, cfg_schedule="linear", cfg_token_id=0):
        super(StreamingODEWrapperForPrefix, self).__init__()
        self.net = net
        self.x_mask = x_mask
        self.x_cond = x_cond

        assert use_cfg == False, "cfg is not supported in streaming detokenizer"

        self.use_cfg = use_cfg
        self.use_cfg_rescale = use_cfg_rescale
        self.cfg_init = cfg_init
        self.cfg_scale = cfg_scale
        self.cfg_token_id = cfg_token_id
        self.cfg_schedule = cfg_schedule
        self.position_ids = None
        self.seq_len = None

        self.incremental_state = {}
        self.kv_cache_tokens = 0
        self.cu_seqlens = None
        self.cu_maxlen = None

        self.cu_seqlens_k = None
        self.cu_maxlen_k = None
        self.previous_seqlen = None

    def clear_all_states(self):
        self.incremental_state = {}
        self.kv_cache_tokens = 0
        self.cu_seqlens = None
        self.cu_maxlen = None

        self.cu_seqlens_k = None
        self.cu_maxlen_k = None
        self.previous_seqlen = None
    
    def state_dict(self):
        return {
            "incremental_state": copy.deepcopy(self.incremental_state),
            "kv_cache_tokens": copy.deepcopy(self.kv_cache_tokens),
            "cu_seqlens": copy.deepcopy(self.cu_seqlens),
            "cu_maxlen": copy.deepcopy(self.cu_maxlen),
            "cu_seqlens_k": copy.deepcopy(self.cu_seqlens_k),
            "cu_maxlen_k": copy.deepcopy(self.cu_maxlen_k),
            "previous_seqlen": copy.deepcopy(self.previous_seqlen)
        }
    
    def load_state_dict(self, state_dict):
        self.incremental_state = state_dict["incremental_state"]
        self.kv_cache_tokens = state_dict["kv_cache_tokens"]
        self.cu_seqlens = state_dict["cu_seqlens"]
        self.cu_maxlen = state_dict["cu_maxlen"]
        self.cu_seqlens_k = state_dict["cu_seqlens_k"]
        self.cu_maxlen_k = state_dict["cu_maxlen_k"]
        self.previous_seqlen = state_dict["previous_seqlen"]

    def set_conditions(self, x_mask, x_cond, start_position_id, cache={}):
        if not self.use_cfg:
            self.x_mask = x_mask
            self.x_cond = x_cond
        else:
            self.x_cond = torch.cat((x_cond, x_cond), dim=0)
            self.x_mask = torch.cat((x_mask, x_mask), dim=0)

        position_ids_cur = [i for i in range(start_position_id, self.x_cond.shape[1] + start_position_id)]
        position_ids = torch.tensor([position_ids_cur])


        if not self.use_cfg:
            self.position_ids = position_ids.to(self.x_cond.device).long()
            self.seq_len = torch.Tensor([position_ids.shape[1]]).to(self.x_cond.device).long()
        else:
            self.position_ids = torch.cat((position_ids, position_ids), dim=0).to(self.x_cond.device).long()
            self.seq_len = torch.Tensor([position_ids.shape[1], position_ids.shape[1]]).to(self.x_cond.device).long()

        cu_seqlens = torch.cumsum(self.seq_len, dim=0)
        self.cu_seqlens = torch.cat([torch.Tensor([0]).to(cu_seqlens.device), cu_seqlens], dim=0).int()
        self.cu_maxlen = self.seq_len.cpu().max()

        if self.cu_seqlens_k is None:
            self.cu_seqlens_k = self.cu_seqlens
            self.cu_maxlen_k = self.cu_maxlen
            previous_seqlen = self.seq_len
        else:
            previous_seqlen_old = cache["previous_seqlen"]
            previous_seqlen = previous_seqlen_old + self.seq_len
            # calculate cu_seqlens_k
            cu_seqlens_k = torch.cumsum(previous_seqlen, dim=0)
            self.cu_seqlens_k = torch.cat([torch.Tensor([0]).to(cu_seqlens_k.device), cu_seqlens_k], dim=0).int()
            self.cu_maxlen_k = previous_seqlen.cpu().max()
        self.previous_seqlen = previous_seqlen
        ret_cache = {
            "previous_seqlen": previous_seqlen
        }
        return ret_cache

    def update_incremental_state(self, reserve_kv_cache_tokens=0, max_kv_cache_tokens=900, condition_cache={"previous_seqlen"}):

        assert reserve_kv_cache_tokens <= max_kv_cache_tokens, "reserve_kv_cache_tokens should be less than or equal to max_kv_cache_tokens"

        for layer_idx, layer_cache in self.incremental_state.items():
            # update attention kv cache
            layer_cache["attn_kvcache"]["prev_k"] = layer_cache["attn_kvcache"]["cur_k"]
            layer_cache["attn_kvcache"]["prev_v"] = layer_cache["attn_kvcache"]["cur_v"]

            self.kv_cache_tokens = layer_cache["attn_kvcache"]["prev_k"].shape[1]

            if self.kv_cache_tokens > max_kv_cache_tokens:
                # drop old tokens from reserve kv cache tokens to max_kv_cache_tokens
                reserve_tokens_excludeprompt = max_kv_cache_tokens - reserve_kv_cache_tokens

                if reserve_kv_cache_tokens == 0:
                    layer_cache["attn_kvcache"]["prev_k"] = layer_cache["attn_kvcache"]["prev_k"][:, -reserve_tokens_excludeprompt:]
                    layer_cache["attn_kvcache"]["prev_v"] = layer_cache["attn_kvcache"]["prev_v"][:, -reserve_tokens_excludeprompt:]
                elif reserve_tokens_excludeprompt == 0:
                    layer_cache["attn_kvcache"]["prev_k"] = layer_cache["attn_kvcache"]["prev_k"][:, :reserve_kv_cache_tokens]
                    layer_cache["attn_kvcache"]["prev_v"] = layer_cache["attn_kvcache"]["prev_v"][:, :reserve_kv_cache_tokens]
                else:
                    layer_cache["attn_kvcache"]["prev_k"] = torch.cat([
                            layer_cache["attn_kvcache"]["prev_k"][:, :reserve_kv_cache_tokens],
                            layer_cache["attn_kvcache"]["prev_k"][:, -reserve_tokens_excludeprompt:]
                        ], dim=1)
                    
                    layer_cache["attn_kvcache"]["prev_v"] = torch.cat([
                            layer_cache["attn_kvcache"]["prev_v"][:, :reserve_kv_cache_tokens],
                            layer_cache["attn_kvcache"]["prev_v"][:, -reserve_tokens_excludeprompt:]
                        ], dim=1)


                bsz = layer_cache["attn_kvcache"]["prev_k"].shape[0]
                self.previous_seqlen = torch.Tensor([layer_cache["attn_kvcache"]["prev_k"].shape[1] for i in range(bsz)]).to(layer_cache["attn_kvcache"]["prev_k"].device).long()
                condition_cache["previous_seqlen"] = self.previous_seqlen
                self.kv_cache_tokens = layer_cache["attn_kvcache"]["prev_k"].shape[1]

            # clear current cache
            layer_cache["attn_kvcache"].pop("cur_k")
            layer_cache["attn_kvcache"].pop("cur_v")


    def forward(self, t, x, args=None):
        # t = torch.tensor([t * 1000] * x.shape[0], device=x.device, dtype=x.dtype).long()
        t = get_cached_zeros(x.shape[0], device=x.device, dtype=torch.long) + (t * 1000).long()

        if self.use_cfg:
            raise NotImplementedError("cfg is not supported in streaming detokenizer.")
        else:
            pred_noise = self.net(x=x, condition=self.x_cond, t=t, position_ids=self.position_ids, 
                                  cu_seqlens=self.cu_seqlens, cu_maxlen=self.cu_maxlen,
                                  cu_seqlens_k=self.cu_seqlens_k, cu_maxlen_k=self.cu_maxlen_k,
                                  incremental_state=self.incremental_state, nopadding=True,
                                  mask=None, seq_len=None
                                  )   
            return pred_noise