Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,192 Bytes
a3e05e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
import torch
import torch.nn as nn
import math
from modules.audio_detokenizer.flow_matching.dit_block import DiTBlock, FinalLayer
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0,
interpolation_factor: int = 1, max_seq_length: int = 4096):
print(f'using rope base theta = {theta}, interpolation factor = {interpolation_factor}')
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
# ROPE type-A extention
# we choose to use interpolation rather than extrapolation for better position encoding
# for scale purposes, t should be a float tensor
t = torch.arange(end, device=freqs.device).float()
scale = 1.0 / float(interpolation_factor)
t *= scale
freqs = torch.outer(t, freqs).float() # type: ignore
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64
# Sometimes, we don't need so many rope emb as seq_len is smaller than max_pos_emb
# e.g. rope 1M but seqlen 32k, this will cause gpu memory waste
if max_seq_length < end:
freqs_cis = freqs_cis[:max_seq_length,].clone()
return freqs_cis
class TimestepEmbedder(nn.Module):
"""
Embeds scalar timesteps into vector representations.
"""
def __init__(self, hidden_size, frequency_embedding_size=256):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
nn.SiLU(),
nn.Linear(hidden_size, hidden_size, bias=True),
)
self.frequency_embedding_size = frequency_embedding_size
@staticmethod
def timestep_embedding(t, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, D) Tensor of positional embeddings.
"""
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
half = dim // 2
freqs = torch.exp(
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
).float().to(device=t.device)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def forward(self, t):
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
t_emb = self.mlp(t_freq.to(self.mlp[0].weight.dtype))
return t_emb
class SinusoidalPositionalEmbedding(nn.Module):
"""This module produces sinusoidal positional embeddings of any length.
Padding symbols are ignored.
"""
def __init__(self, embedding_dim, padding_idx, init_size=1024):
super().__init__()
self.embedding_dim = embedding_dim
self.padding_idx = padding_idx
self.weights = SinusoidalPositionalEmbedding.get_embedding(
init_size,
embedding_dim,
padding_idx,
)
self.register_buffer('_float_tensor', torch.FloatTensor(1))
@staticmethod
def get_embedding(num_embeddings, embedding_dim, padding_idx=None):
"""Build sinusoidal embeddings.
This matches the implementation in tensor2tensor, but differs slightly
from the description in Section 3.5 of "Attention Is All You Need".
"""
half_dim = embedding_dim // 2 # d/2
emb = math.log(10000) / (half_dim - 1) # 2*log(10000)/(d-2)
emb = torch.exp(torch.arange(half_dim, dtype=torch.float) * -emb) # -2i/(d-2)*log(10000); i from 0 to (d-2)/2; shape: (d/2, )
emb = torch.arange(num_embeddings, dtype=torch.float).unsqueeze(1) * emb.unsqueeze(0) # pos/[1000 ** (2i/(d-2))]; shape: (num_embeddings, d/2)
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1) # shape: (num_embeddings, d)
if embedding_dim % 2 == 1:
# zero pad
emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1)
if padding_idx is not None:
emb[padding_idx, :] = 0
return emb
def forward(self, input, incremental_state=None, timestep=None, **kwargs):
"""Input is expected to be of size [bsz x seqlen]."""
bsz, seq_len = input.shape[:2]
max_pos = self.padding_idx + 1 + seq_len
if self.weights is None or max_pos > self.weights.size(0):
# recompute/expand embeddings if needed
self.weights = SinusoidalPositionalEmbedding.get_embedding(
max_pos,
self.embedding_dim,
self.padding_idx,
)
self.weights = self.weights.to(self._float_tensor)
if incremental_state is not None:
# positions is the same for every token when decoding a single step
pos = timestep.view(-1)[0] + 1 if timestep is not None else seq_len
return self.weights[self.padding_idx + pos, :].expand(bsz, 1, -1)
positions = self.make_positions(input, self.padding_idx)
return self.weights.index_select(0, positions.view(-1)).view(bsz, seq_len, -1).detach() # (B, T, dim)
def max_positions(self):
"""Maximum number of supported positions."""
return int(1e5) # an arbitrary large number
def make_positions(self, tensor, padding_idx):
"""Replace non-padding symbols with their position numbers.
Position numbers begin at padding_idx+1. Padding symbols are ignored.
"""
# The series of casts and type-conversions here are carefully
# balanced to both work with ONNX export and XLA. In particular XLA
# prefers ints, cumsum defaults to output longs, and ONNX doesn't know
# how to handle the dtype kwarg in cumsum.
mask = tensor.ne(padding_idx).int()
return (
torch.cumsum(mask, dim=1).type_as(mask) * mask
).long() + padding_idx
class DiTPrefix(nn.Module):
"""
Diffusion model with a Transformer backbone.
"""
def __init__(
self,
input_size,
output_size,
semantic_vocab_size,
hidden_size=1024,
depth=12,
num_heads=4,
# mlp related
mlp_ratio=4.0,
ffn_type="conv1d_conv1d",
ffn_gated_glu=True,
ffn_act_layer="gelu",
ffn_conv_kernel_size=5,
# rope
use_rope=False,
rope_params={
"max_position_embeddings": 4096,
"rope_base": 10000.0,
"rope_interpolation_factor": 1.0,
},
position_embedding_type="sincos",
max_seq_len=4096,
prompt_cfg_dropout=0.0
):
super().__init__()
self.num_heads = num_heads
self.prompt_cfg_dropout = prompt_cfg_dropout
self.t_embedder = TimestepEmbedder(hidden_size)
self.semantic_token_embedding = nn.Embedding(semantic_vocab_size, hidden_size)
self.input_linear = nn.Linear(input_size, hidden_size)
# position embedding
if position_embedding_type == "learnable":
self.position_embedding = nn.Embedding(max_seq_len+1, hidden_size)
elif position_embedding_type == "sincos":
self.position_embedding = SinusoidalPositionalEmbedding(hidden_size, 0, max_seq_len+1)
elif position_embedding_type == "skip":
self.position_embedding = None
else:
raise NotImplementedError("Position embedding type: {} not implemented.".format(position_embedding_type))
self.use_rope = use_rope
if self.use_rope:
assert hidden_size % num_heads == 0, "Hidden size must be divisible by num_heads for rope position embedding."
rope_dim = hidden_size // num_heads
self.rotary_pos_emb = precompute_freqs_cis(
rope_dim, rope_params["max_position_embeddings"],
theta=rope_params["rope_base"],
interpolation_factor=rope_params["rope_interpolation_factor"],
max_seq_length=max_seq_len
)
self.blocks = nn.ModuleList([
DiTBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio,
ffn_type=ffn_type, ffn_conv_kernel_size=ffn_conv_kernel_size, ffn_gated_glu=ffn_gated_glu, ffn_act_layer=ffn_act_layer) for _ in range(depth)
])
self.final_layer = FinalLayer(hidden_size, output_size)
self.initialize_weights()
def initialize_weights(self):
# Initialize transformer layers:
def _basic_init(module):
if isinstance(module, nn.Linear):
torch.nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
self.apply(_basic_init)
# Initialize timestep embedding MLP:
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
# Zero-out adaLN modulation layers in DiT blocks:
for block in self.blocks:
nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
# Zero-out output layers:
nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0)
nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0)
nn.init.constant_(self.final_layer.linear.weight, 0)
nn.init.constant_(self.final_layer.linear.bias, 0)
def forward(self, x, position_ids, t, condition, seq_len, cu_seqlens, cu_maxlen, cu_seqlens_k, cu_maxlen_k, mask, incremental_state=None, nopadding=True):
"""
Forward pass of DiT.
x: (N, T, C) tensor of inputs (latent representations of speech)
position_ids: (N, T) tensor of positional indices
t: (N,) tensor of diffusion timesteps
condition: (N, T) tensor of semantic tokens
seq_len: (N,) tensor of sequence lengths
"""
condition = self.semantic_token_embedding(condition) # (N, T, D)
x = self.input_linear(x)
if self.position_embedding is not None:
position_emb = self.position_embedding(position_ids)
x = x + position_emb
# ROPE
if self.use_rope:
bsz, seqlen = position_ids.shape
if self.rotary_pos_emb.device != position_ids.device:
self.rotary_pos_emb = self.rotary_pos_emb.to(position_ids.device)
rotary_pos_emb = torch.zeros((bsz, seqlen, self.rotary_pos_emb.shape[1]),
dtype=self.rotary_pos_emb.dtype,
device=self.rotary_pos_emb.device)
for b in range(bsz):
cur_rope = rotary_pos_emb[b]
cur_position_ids = position_ids[b]
cur_rope[:] = self.rotary_pos_emb[cur_position_ids]
else:
rotary_pos_emb = None
t = self.t_embedder(t) # (N, D)
c = t.unsqueeze(1) + condition # (N, T, D)
for block_idx, block in enumerate(self.blocks):
# x = block(x, c, attn_mask) # (N, T, D)
# XXX mask could be None because we always use full mask
if incremental_state is not None:
if block_idx not in incremental_state:
incremental_state[block_idx] = {}
incr = incremental_state[block_idx]
else:
incr = None
x = block(x=x, c=c, seq_len=seq_len, cu_seqlens=cu_seqlens, cu_maxlen=cu_maxlen, cu_seqlens_k=cu_seqlens_k, cu_maxlen_k=cu_maxlen_k, mask=mask, rotary_pos_emb=rotary_pos_emb, incremental_state=incr, nopadding=nopadding)
x = self.final_layer(x, c) # (N, T, C)
return x
|