File size: 9,133 Bytes
a3e05e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import torch
import torch.nn as nn


import torch
import torch.nn as nn
import torch.nn.functional as F

from flash_attn import flash_attn_varlen_func, flash_attn_varlen_qkvpacked_func

def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
    # x shape: bsz, seqlen, self.n_local_heads, self.head_hidden_dim / 2
    # the last shape is "self.hidden_dim / 2" because we convert to complex
    assert x.ndim == 4
    assert freqs_cis.shape == (x.shape[0], x.shape[1], x.shape[-1]), \
        f'x shape: {x.shape}, freqs_cis shape: {freqs_cis.shape}'
     
    # reshape freq cis to match and apply pointwise multiply
    # new shape: bsz, seq_len, 1, self.head_hidden_dim / 2
    shape = [x.shape[0], x.shape[1], 1, x.shape[-1]]
    return freqs_cis.view(*shape)


def apply_rotary_emb(
    xq: torch.Tensor,
    xk: torch.Tensor,
    freqs_cis: torch.Tensor,
):
    xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
    xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
    
    freqs_cis = reshape_for_broadcast(freqs_cis, xq_)
    xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3)
    xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
    return xq_out.type_as(xq), xk_out.type_as(xk)



class Attention(nn.Module):

    def __init__(
            self,
            dim: int,
            num_heads: int = 8,
            qkv_bias: bool = False,
            qk_norm: bool = False,
            attn_drop: float = 0.,
            proj_drop: float = 0.,
            norm_layer: nn.Module = nn.LayerNorm,
            flash_attention: bool = True
    ) -> None:
        super().__init__()
        assert dim % num_heads == 0, 'dim should be divisible by num_heads'
        self.num_heads = num_heads
        self.head_dim = dim // num_heads
        self.scale = self.head_dim ** -0.5
        self.fused_attn = flash_attention

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.qk_norm = qk_norm
        self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
        self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x: torch.Tensor, seq_len, cu_seqlens, max_seqlen, cu_seqlens_k, max_seqlen_k, rotary_pos_emb=None, incremental_state=None, nopadding=True) -> torch.Tensor:
        B, N, C = x.shape

        if self.fused_attn:
            if nopadding:
                qkv = self.qkv(x)
                qkv = qkv.view(B * N, self.num_heads * 3, self.head_dim)
                q, k, v = qkv.split([self.num_heads] * 3, dim=1)
                q, k = self.q_norm(q), self.k_norm(k)

                q = q.view(B, N, self.num_heads, self.head_dim)
                k = k.view(B, N, self.num_heads, self.head_dim)
                v = v.view(B, N, self.num_heads, self.head_dim)

                if rotary_pos_emb is not None:
                    q, k = apply_rotary_emb(q, k, rotary_pos_emb)
                
                if incremental_state is not None:
                    if "prev_k" in incremental_state:
                        prev_k = incremental_state["prev_k"]
                        k = torch.cat([prev_k, k], dim=1)
                    
                    if "cur_k" not in incremental_state:
                        incremental_state["cur_k"] = {}
                    incremental_state["cur_k"] = k
                
                    if "prev_v" in incremental_state:
                        prev_v = incremental_state["prev_v"]
                        v = torch.cat([prev_v, v], dim=1)
                    
                    if "cur_v" not in incremental_state:
                        incremental_state["cur_v"] = {}
                    incremental_state["cur_v"] = v
                
                q = q.view(B * N, self.num_heads, self.head_dim)
                k = k.view(-1, self.num_heads, self.head_dim)
                v = v.view(-1, self.num_heads, self.head_dim)

                x = flash_attn_varlen_func(
                    q=q,
                    k=k,
                    v=v,
                    cu_seqlens_q=cu_seqlens,
                    cu_seqlens_k=cu_seqlens_k,
                    max_seqlen_q=max_seqlen,
                    max_seqlen_k=max_seqlen_k,
                    dropout_p=self.attn_drop.p if self.training else 0.,
                )
            else:
                
                if incremental_state is not None:
                    raise NotImplementedError("It is designed for batching inference. AR-chunk is not supported currently.")

                qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim)
                if self.qk_norm:
                    q, k, v = qkv.unbind(2)
                    q, k = self.q_norm(q), self.k_norm(k)
                    # re-bind
                    qkv = torch.stack((q, k, v), dim=2)
                
                # pack qkv with seq_len
                qkv_collect = []
                for i in range(qkv.shape[0]):
                    qkv_collect.append(
                        qkv[i, :seq_len[i], :, :, :]
                    )
                
                qkv = torch.cat(qkv_collect, dim=0)

                x = flash_attn_varlen_qkvpacked_func(qkv=qkv, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen, dropout_p=self.attn_drop.p if self.training else 0.)
                
                # unpack and pad 0
                x_collect = []
                for i in range(B):
                    x_collect.append(
                        x[cu_seqlens[i]:cu_seqlens[i+1], :, :]
                    )
                x = torch.nn.utils.rnn.pad_sequence(x_collect, batch_first=True, padding_value=0)

        else:
            q = q * self.scale
            attn = q @ k.transpose(-2, -1)
            attn = attn.softmax(dim=-1)
            attn = self.attn_drop(attn)
            x = attn @ v
            x = x.transpose(1, 2)

        x = x.reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


def modulate(x, shift, scale):
    return x * (1 + scale) + shift


class FinalLayer(nn.Module):
    """
    The final layer of DiT.
    """
    def __init__(self, hidden_size, out_channels):
        super().__init__()
        self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.linear = nn.Linear(hidden_size, out_channels, bias=True)
        self.adaLN_modulation = nn.Sequential(
            nn.SiLU(),
            nn.Linear(hidden_size, 2 * hidden_size, bias=True)
        )

    def forward(self, x, c):
        shift, scale = self.adaLN_modulation(c).chunk(2, dim=2)
        x = modulate(self.norm_final(x), shift, scale)
        x = self.linear(x)
        return x


class DiTBlock(nn.Module):
    """
    A DiT block with adaptive layer norm zero (adaLN-Zero) conditioning.
    """
    def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, ffn_type="conv1d_conv1d", ffn_gated_glu=True, ffn_act_layer="gelu", ffn_conv_kernel_size=5, **block_kwargs):
        super().__init__()
        self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.attn = Attention(hidden_size, num_heads=num_heads, qkv_bias=True, **block_kwargs)


        self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
 
        if ffn_type == "vanilla_mlp":
            from timm.models.vision_transformer import Mlp
            mlp_hidden_dim = int(hidden_size * mlp_ratio)
            approx_gelu = lambda: nn.GELU(approximate="tanh")
            self.mlp = Mlp(in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0)
        else:
            raise NotImplementedError(f"FFN type {ffn_type} is not implemented")
        
        self.adaLN_modulation = nn.Sequential(
            nn.SiLU(),
            nn.Linear(hidden_size, 6 * hidden_size, bias=True)
        )

    def forward(self, x, c, seq_len, cu_seqlens, cu_maxlen, cu_seqlens_k, cu_maxlen_k, mask, rotary_pos_emb=None, incremental_state=None, nopadding=True):
        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(c).chunk(6, dim=2)

        x_ = modulate(self.norm1(x), shift_msa, scale_msa)

        if incremental_state is not None:
            if "attn_kvcache" not in incremental_state:
                incremental_state["attn_kvcache"] = {}
            inc_attn = incremental_state["attn_kvcache"]
        else:
            inc_attn = None

        x_ = self.attn(x_, seq_len=seq_len, cu_seqlens=cu_seqlens, max_seqlen=cu_maxlen, cu_seqlens_k=cu_seqlens_k, max_seqlen_k=cu_maxlen_k, rotary_pos_emb=rotary_pos_emb, incremental_state=inc_attn, nopadding=nopadding)
        
        if not nopadding:
            x_ = x_ * mask[:, :, None]
        
        x = x + gate_msa * x_

        x_ = modulate(self.norm2(x), shift_mlp, scale_mlp)
        
        x_ = self.mlp(x_)

        if not nopadding:
            x_ = x_ * mask[:, :, None]

        x = x + gate_mlp * x_
        return x