jzou1995 commited on
Commit
486a9e9
·
verified ·
1 Parent(s): 1cf3dd9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +270 -49
app.py CHANGED
@@ -1,64 +1,285 @@
 
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
 
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
27
 
28
- response = ""
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
 
 
 
 
42
 
 
43
  """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45
  """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
+ import os
2
+ import re
3
+ import json
4
  import gradio as gr
5
+ import requests
6
+ from typing import List, Dict
7
+ from googlesearch import search
8
+ import google.generativeai as genai
9
+ from google.generativeai.types import HarmCategory, HarmBlockThreshold
10
 
11
+ def initialize_gemini(api_key: str):
12
+ """Initialize the Google Gemini API with appropriate configurations"""
13
+ genai.configure(api_key=api_key)
14
+ generation_config = {
15
+ "temperature": 0.2,
16
+ "top_p": 0.8,
17
+ "top_k": 40,
18
+ "max_output_tokens": 1024,
19
+ }
20
+ safety_settings = {
21
+ HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_NONE,
22
+ HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_NONE,
23
+ HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_NONE,
24
+ HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_NONE,
25
+ }
26
+
27
+ model = genai.GenerativeModel(
28
+ model_name="gemini-1.5-flash",
29
+ generation_config=generation_config,
30
+ safety_settings=safety_settings
31
+ )
32
+ return model
33
 
34
+ def google_search_naics(company_name: str) -> List[str]:
35
+ """Find potential NAICS codes for a company using Google search"""
36
+ query = f"NAICS code 2022 for {company_name}"
37
+ naics_codes = set()
38
+
39
+ try:
40
+ search_results = search(query, stop=5, pause=2)
41
+
42
+ for result_url in search_results:
43
+ try:
44
+ response = requests.get(result_url, timeout=5)
45
+ if response.status_code == 200:
46
+ # Extract 6-digit NAICS codes
47
+ found_codes = re.findall(r'\b\d{6}\b', response.text)
48
+ naics_codes.update(found_codes)
49
+ except Exception as e:
50
+ print(f"Error fetching {result_url}: {e}")
51
+
52
+ return list(naics_codes)[:5] # Return up to 5 extracted NAICS codes
53
+ except Exception as e:
54
+ print(f"Error performing Google search: {str(e)}")
55
+ return []
56
 
57
+ def get_naics_classification(model, company_name: str, context: str, candidates: List[str]) -> dict:
58
+ """
59
+ Use Gemini AI to determine the most appropriate NAICS code from candidates
60
+ First provides reasoning, then multiple possibilities with confidence levels
61
+ """
62
+ try:
63
+ # If we have candidate codes from Google search
64
+ if candidates:
65
+ prompt = f"""
66
+ You are a NAICS code classification expert. Based on the company information provided and the NAICS code candidates found from Google search, determine the most appropriate NAICS code.
67
 
68
+ Company Name: {company_name}
69
+ Context Information: {context}
 
 
 
70
 
71
+ NAICS Code Candidates from Google Search: {candidates}
72
 
73
+ First, explain your reasoning for which industry this company belongs to.
74
+ Then list 3 potential NAICS classifications with confidence percentages (must add up to 100%).
75
+ Finally, provide your final conclusion.
76
 
77
+ Your response should be in this format:
78
+ REASONING: [Your detailed reasoning about the company's industry classification]
 
 
 
 
 
 
 
 
 
79
 
80
+ POSSIBILITY_1: [Industry name] - NAICS Code [6-digit code] - [XX]% confidence
81
+ POSSIBILITY_2: [Industry name] - NAICS Code [6-digit code] - [XX]% confidence
82
+ POSSIBILITY_3: [Industry name] - NAICS Code [6-digit code] - [XX]% confidence
83
 
84
+ CONCLUSION: I am [XX]% confident this company is [industry description] which is NAICS code [6-digit code]
85
  """
86
+ # If no candidates were found from Google search
87
+ else:
88
+ prompt = f"""
89
+ You are a NAICS code classification expert. Based on the company information provided, determine the most appropriate NAICS code.
90
+
91
+ Company Name: {company_name}
92
+ Context Information: {context}
93
+
94
+ First, explain your reasoning for which industry this company belongs to.
95
+ Then list 3 potential NAICS classifications with confidence percentages (must add up to 100%).
96
+ Finally, provide your final conclusion.
97
+
98
+ Your response should be in this format:
99
+ REASONING: [Your detailed reasoning about the company's industry classification]
100
+
101
+ POSSIBILITY_1: [Industry name] - NAICS Code [6-digit code] - [XX]% confidence
102
+ POSSIBILITY_2: [Industry name] - NAICS Code [6-digit code] - [XX]% confidence
103
+ POSSIBILITY_3: [Industry name] - NAICS Code [6-digit code] - [XX]% confidence
104
+
105
+ CONCLUSION: I am [XX]% confident this company is [industry description] which is NAICS code [6-digit code]
106
  """
107
+ response = model.generate_content(prompt)
108
+ response_text = response.text.strip()
109
+
110
+ # Extract reasoning
111
+ reasoning_match = re.search(r'REASONING:(.*?)POSSIBILITY_1:', response_text, re.DOTALL | re.IGNORECASE)
112
+ reasoning = reasoning_match.group(1).strip() if reasoning_match else "No reasoning provided."
113
+
114
+ # Extract possibilities
115
+ possibilities = []
116
+
117
+ # Try to extract possibility 1
118
+ poss1_match = re.search(r'POSSIBILITY_1:(.*?)POSSIBILITY_2:', response_text, re.DOTALL | re.IGNORECASE)
119
+ if poss1_match:
120
+ possibilities.append(poss1_match.group(1).strip())
121
+
122
+ # Try to extract possibility 2
123
+ poss2_match = re.search(r'POSSIBILITY_2:(.*?)POSSIBILITY_3:', response_text, re.DOTALL | re.IGNORECASE)
124
+ if poss2_match:
125
+ possibilities.append(poss2_match.group(1).strip())
126
+
127
+ # Try to extract possibility 3
128
+ poss3_match = re.search(r'POSSIBILITY_3:(.*?)CONCLUSION:', response_text, re.DOTALL | re.IGNORECASE)
129
+ if poss3_match:
130
+ possibilities.append(poss3_match.group(1).strip())
131
+
132
+ # Extract conclusion
133
+ conclusion_match = re.search(r'CONCLUSION:(.*?)
134
+ except Exception as e:
135
+ print(f"Error getting NAICS classification: {str(e)}")
136
+ return {
137
+ "naics_code": "000000",
138
+ "reasoning": f"Error analyzing company: {str(e)}"
139
+ }
140
+
141
+ def find_naics_code(api_key, company_name, company_description):
142
+ """Main function to find NAICS code that will be called by Gradio"""
143
+ if not api_key or not company_name:
144
+ return "Please provide both API key and company name."
145
+
146
+ try:
147
+ # Initialize Gemini API
148
+ model = initialize_gemini(api_key)
149
+
150
+ # Search for NAICS candidates
151
+ naics_candidates = google_search_naics(company_name)
152
+
153
+ # Get classification
154
+ if not naics_candidates:
155
+ result = get_naics_classification(model, company_name, company_description, [])
156
+ else:
157
+ result = get_naics_classification(model, company_name, company_description, naics_candidates)
158
+
159
+ # Format the output
160
+ output = f"## NAICS Code for {company_name}\n\n"
161
+ output += f"**NAICS Code:** {result['naics_code']}\n\n"
162
+ output += f"**Reasoning:**\n{result['reasoning']}\n\n"
163
+
164
+ # Add possibilities section
165
+ if 'possibilities' in result and result['possibilities']:
166
+ output += f"**Possible Classifications:**\n\n"
167
+ for i, possibility in enumerate(result['possibilities'], 1):
168
+ output += f"{i}. {possibility}\n\n"
169
+
170
+ # Add conclusion
171
+ if 'conclusion' in result and result['conclusion']:
172
+ output += f"**Conclusion:**\n{result['conclusion']}\n\n"
173
+
174
+ if naics_candidates:
175
+ output += f"**Candidate NAICS Codes Found from Google:**\n{', '.join(naics_candidates)}"
176
+
177
+ return output
178
+
179
+ except Exception as e:
180
+ return f"Error: {str(e)}"
181
+
182
+ # Create Gradio Interface
183
+ with gr.Blocks(title="NAICS Code Finder") as app:
184
+ gr.Markdown("# NAICS Code Finder")
185
+ gr.Markdown("This app helps you find the appropriate NAICS code for a company based on its name and description.")
186
+
187
+ with gr.Row():
188
+ with gr.Column():
189
+ api_key = gr.Textbox(label="Google Gemini API Key", placeholder="Enter your Gemini API key here", type="password")
190
+ company_name = gr.Textbox(label="Company Name", placeholder="Enter the company name")
191
+ company_description = gr.Textbox(label="Company Description", placeholder="Enter a brief description of the company", lines=5)
192
+
193
+ submit_btn = gr.Button("Find NAICS Code")
194
+
195
+ with gr.Column():
196
+ output = gr.Markdown(label="Result")
197
+
198
+ submit_btn.click(
199
+ fn=find_naics_code,
200
+ inputs=[api_key, company_name, company_description],
201
+ outputs=output
202
+ )
203
+
204
+ if __name__ == "__main__":
205
+ app.launch()
206
+ , response_text, re.DOTALL | re.IGNORECASE)
207
+ conclusion = conclusion_match.group(1).strip() if conclusion_match else "No conclusion provided."
208
+
209
+ # Extract final NAICS code from conclusion
210
+ naics_match = re.search(r'NAICS code (\d{6})', conclusion)
211
+ if naics_match:
212
+ naics_code = naics_match.group(1)
213
+ else:
214
+ # Try to find any 6-digit code in the conclusion
215
+ code_match = re.search(r'\b(\d{6})\b', conclusion)
216
+ naics_code = code_match.group(1) if code_match else "000000"
217
+
218
+ return {
219
+ "naics_code": naics_code,
220
+ "reasoning": reasoning,
221
+ "possibilities": possibilities,
222
+ "conclusion": conclusion
223
+ }
224
+ except Exception as e:
225
+ print(f"Error getting NAICS classification: {str(e)}")
226
+ return {
227
+ "naics_code": "000000",
228
+ "reasoning": f"Error analyzing company: {str(e)}"
229
+ }
230
+
231
+ def find_naics_code(api_key, company_name, company_description):
232
+ """Main function to find NAICS code that will be called by Gradio"""
233
+ if not api_key or not company_name:
234
+ return "Please provide both API key and company name."
235
+
236
+ try:
237
+ # Initialize Gemini API
238
+ model = initialize_gemini(api_key)
239
+
240
+ # Search for NAICS candidates
241
+ naics_candidates = google_search_naics(company_name)
242
+
243
+ # Get classification
244
+ if not naics_candidates:
245
+ result = get_naics_classification(model, company_name, company_description, [])
246
+ else:
247
+ result = get_naics_classification(model, company_name, company_description, naics_candidates)
248
+
249
+ # Format the output
250
+ output = f"## NAICS Code for {company_name}\n\n"
251
+ output += f"**NAICS Code:** {result['naics_code']}\n\n"
252
+ output += f"**Reasoning:**\n{result['reasoning']}\n\n"
253
+
254
+ if naics_candidates:
255
+ output += f"**Candidate NAICS Codes Found:**\n{', '.join(naics_candidates)}"
256
+
257
+ return output
258
+
259
+ except Exception as e:
260
+ return f"Error: {str(e)}"
261
 
262
+ # Create Gradio Interface
263
+ with gr.Blocks(title="NAICS Code Finder") as app:
264
+ gr.Markdown("# NAICS Code Finder")
265
+ gr.Markdown("This app helps you find the appropriate NAICS code for a company based on its name and description.")
266
+
267
+ with gr.Row():
268
+ with gr.Column():
269
+ api_key = gr.Textbox(label="Google Gemini API Key", placeholder="Enter your Gemini API key here", type="password")
270
+ company_name = gr.Textbox(label="Company Name", placeholder="Enter the company name")
271
+ company_description = gr.Textbox(label="Company Description", placeholder="Enter a brief description of the company", lines=5)
272
+
273
+ submit_btn = gr.Button("Find NAICS Code")
274
+
275
+ with gr.Column():
276
+ output = gr.Markdown(label="Result")
277
+
278
+ submit_btn.click(
279
+ fn=find_naics_code,
280
+ inputs=[api_key, company_name, company_description],
281
+ outputs=output
282
+ )
283
 
284
  if __name__ == "__main__":
285
+ app.launch()