Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
import os
|
2 |
import re
|
3 |
import json
|
4 |
-
import gradio as gr
|
5 |
import requests
|
6 |
from typing import List, Dict
|
7 |
from googlesearch import search
|
@@ -31,67 +30,82 @@ def initialize_gemini(api_key: str):
|
|
31 |
)
|
32 |
return model
|
33 |
|
34 |
-
def google_search_naics(company_name: str
|
35 |
-
"""
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
else:
|
40 |
-
query = f"2022 NAICS code for \"{company_name}\" company industry classification"
|
41 |
-
|
42 |
naics_codes = set()
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
try:
|
45 |
-
|
46 |
|
47 |
-
for
|
|
|
48 |
try:
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
except Exception as e:
|
55 |
-
print(f"Error
|
|
|
56 |
|
57 |
-
|
|
|
58 |
except Exception as e:
|
59 |
-
print(f"Error performing Google search: {str(e)}")
|
60 |
return []
|
61 |
|
62 |
-
def get_naics_classification(model, company_name: str, context: str, candidates: List[str]
|
63 |
"""
|
64 |
Use Gemini AI to determine the most appropriate NAICS code from candidates
|
65 |
-
First provides reasoning, then
|
66 |
"""
|
67 |
try:
|
|
|
|
|
68 |
# If we have candidate codes from Google search
|
69 |
if candidates:
|
|
|
70 |
prompt = f"""
|
71 |
You are a NAICS code classification expert. Based on the company information provided and the NAICS code candidates found from Google search, determine the most appropriate NAICS code.
|
72 |
|
73 |
Company Name: {company_name}
|
74 |
Context Information: {context}
|
75 |
-
Google Search Query Used: {search_query}
|
76 |
-
NAICS Code Candidates from Google Search: {candidates}
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
Then, in a section titled "REASONING:", explain your reasoning for which industry this company belongs to.
|
81 |
|
82 |
-
|
83 |
-
|
|
|
|
|
84 |
|
85 |
Your response should be in this format:
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
POSSIBILITY_1: [Industry name] - NAICS Code [6-digit code] - [XX]% confidence
|
91 |
-
POSSIBILITY_2: [Industry name] - NAICS Code [6-digit code] - [XX]% confidence
|
92 |
-
POSSIBILITY_3: [Industry name] - NAICS Code [6-digit code] - [XX]% confidence
|
93 |
-
|
94 |
-
CONCLUSION: I am [XX]% confident this company is [industry description] which is NAICS code [6-digit code]
|
95 |
"""
|
96 |
# If no candidates were found from Google search
|
97 |
else:
|
@@ -100,157 +114,86 @@ You are a NAICS code classification expert. Based on the company information pro
|
|
100 |
|
101 |
Company Name: {company_name}
|
102 |
Context Information: {context}
|
103 |
-
Google Search Query Used: {search_query}
|
104 |
-
|
105 |
-
First, start with a section titled "GOOGLE_FINDINGS:" where you acknowledge that the Google search did not return any specific NAICS codes for this company.
|
106 |
|
107 |
-
|
108 |
-
|
109 |
-
Then
|
110 |
-
Finally, provide your final conclusion.
|
111 |
|
112 |
Your response should be in this format:
|
113 |
-
|
114 |
-
|
115 |
-
REASONING: [Your detailed reasoning about the company's industry classification based on the limited information available]
|
116 |
-
|
117 |
-
POSSIBILITY_1: [Industry name] - NAICS Code [6-digit code] - [XX]% confidence
|
118 |
-
POSSIBILITY_2: [Industry name] - NAICS Code [6-digit code] - [XX]% confidence
|
119 |
-
POSSIBILITY_3: [Industry name] - NAICS Code [6-digit code] - [XX]% confidence
|
120 |
-
|
121 |
-
CONCLUSION: I am [XX]% confident this company is [industry description] which is NAICS code [6-digit code]
|
122 |
"""
|
123 |
response = model.generate_content(prompt)
|
124 |
response_text = response.text.strip()
|
125 |
|
126 |
-
#
|
127 |
-
|
128 |
-
google_findings = google_findings_match.group(1).strip() if google_findings_match else "No Google findings provided."
|
129 |
-
|
130 |
-
# Extract reasoning
|
131 |
-
reasoning_match = re.search(r'REASONING:(.*?)POSSIBILITY_1:', response_text, re.DOTALL | re.IGNORECASE)
|
132 |
-
reasoning = reasoning_match.group(1).strip() if reasoning_match else "No reasoning provided."
|
133 |
-
|
134 |
-
# Extract possibilities
|
135 |
-
possibilities = []
|
136 |
|
137 |
-
#
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
# Try to extract possibility 2
|
143 |
-
poss2_match = re.search(r'POSSIBILITY_2:(.*?)POSSIBILITY_3:', response_text, re.DOTALL | re.IGNORECASE)
|
144 |
-
if poss2_match:
|
145 |
-
possibilities.append(poss2_match.group(1).strip())
|
146 |
-
|
147 |
-
# Try to extract possibility 3
|
148 |
-
poss3_match = re.search(r'POSSIBILITY_3:(.*?)CONCLUSION:', response_text, re.DOTALL | re.IGNORECASE)
|
149 |
-
if poss3_match:
|
150 |
-
possibilities.append(poss3_match.group(1).strip())
|
151 |
|
152 |
-
# Extract
|
153 |
-
|
154 |
-
|
155 |
|
156 |
-
# Extract
|
157 |
-
naics_match = re.search(r'
|
158 |
if naics_match:
|
159 |
-
naics_code = naics_match.group(
|
160 |
else:
|
161 |
-
# Try to find any 6-digit code in the
|
162 |
-
code_match = re.search(r'\b(\d{6})\b',
|
163 |
-
naics_code = code_match.group(1) if code_match else "000000"
|
164 |
-
|
165 |
-
return
|
166 |
-
"naics_code": naics_code,
|
167 |
-
"google_findings": google_findings,
|
168 |
-
"reasoning": reasoning,
|
169 |
-
"possibilities": possibilities,
|
170 |
-
"conclusion": conclusion
|
171 |
-
}
|
172 |
except Exception as e:
|
173 |
-
print(f"Error getting NAICS classification: {str(e)}")
|
174 |
return {
|
175 |
"naics_code": "000000",
|
176 |
-
"
|
177 |
-
"reasoning": f"Error analyzing company: {str(e)}",
|
178 |
-
"possibilities": [],
|
179 |
-
"conclusion": "Error in analysis"
|
180 |
}
|
181 |
|
182 |
-
def
|
183 |
-
"""Main function to
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
#
|
192 |
-
|
193 |
-
|
194 |
-
|
|
|
|
|
195 |
|
196 |
-
#
|
|
|
|
|
197 |
if not naics_candidates:
|
198 |
-
|
|
|
|
|
199 |
else:
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
output = f"## Analysis for {company_name}\n\n"
|
204 |
-
|
205 |
-
# Display search query prominently at the top
|
206 |
-
output += f"**Google Search Query Used:**\n`{search_query}`\n\n"
|
207 |
-
|
208 |
-
# Add Google findings first
|
209 |
-
if 'google_findings' in result and result['google_findings']:
|
210 |
-
output += f"**Google Search Findings:**\n{result['google_findings']}\n\n"
|
211 |
-
|
212 |
-
# Then reasoning
|
213 |
-
output += f"**Reasoning:**\n{result['reasoning']}\n\n"
|
214 |
-
|
215 |
-
# Add possibilities section
|
216 |
-
if 'possibilities' in result and result['possibilities']:
|
217 |
-
output += f"**Possible Classifications:**\n\n"
|
218 |
-
for i, possibility in enumerate(result['possibilities'], 1):
|
219 |
-
output += f"{i}. {possibility}\n\n"
|
220 |
-
|
221 |
-
# Add conclusion
|
222 |
-
if 'conclusion' in result and result['conclusion']:
|
223 |
-
output += f"**Conclusion:**\n{result['conclusion']}\n\n"
|
224 |
-
|
225 |
-
# Add final NAICS code at the very end
|
226 |
-
output += f"**FINAL NAICS CODE: {result['naics_code']}**"
|
227 |
-
|
228 |
-
return output
|
229 |
-
|
230 |
-
except Exception as e:
|
231 |
-
return f"Error: {str(e)}"
|
232 |
|
233 |
-
#
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
with gr.Column():
|
240 |
-
api_key = gr.Textbox(label="Google Gemini API Key", placeholder="Enter your Gemini API key here", type="password")
|
241 |
-
company_name = gr.Textbox(label="Company Name", placeholder="Enter the company name")
|
242 |
-
company_description = gr.Textbox(label="Company Description", placeholder="Enter a brief description of the company", lines=5)
|
243 |
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
output = gr.Markdown(label="Result")
|
248 |
-
|
249 |
-
submit_btn.click(
|
250 |
-
fn=find_naics_code,
|
251 |
-
inputs=[api_key, company_name, company_description],
|
252 |
-
outputs=output
|
253 |
-
)
|
254 |
|
255 |
if __name__ == "__main__":
|
256 |
-
|
|
|
1 |
import os
|
2 |
import re
|
3 |
import json
|
|
|
4 |
import requests
|
5 |
from typing import List, Dict
|
6 |
from googlesearch import search
|
|
|
30 |
)
|
31 |
return model
|
32 |
|
33 |
+
def google_search_naics(company_name: str) -> List[str]:
|
34 |
+
"""
|
35 |
+
Find potential NAICS codes for a company using multiple targeted Google searches
|
36 |
+
Uses more specific search queries to improve results
|
37 |
+
"""
|
|
|
|
|
|
|
38 |
naics_codes = set()
|
39 |
|
40 |
+
# Create multiple search queries for better results
|
41 |
+
queries = [
|
42 |
+
f"NAICS code for {company_name}",
|
43 |
+
f"what is {company_name} company NAICS code",
|
44 |
+
f"{company_name} business entity NAICS classification",
|
45 |
+
f"{company_name} industry classification NAICS",
|
46 |
+
f"{company_name} company information NAICS"
|
47 |
+
]
|
48 |
+
|
49 |
try:
|
50 |
+
print(f"π Searching Google for NAICS codes for '{company_name}'...")
|
51 |
|
52 |
+
for query in queries:
|
53 |
+
print(f" Query: {query}")
|
54 |
try:
|
55 |
+
# Search with each query, limiting to 3 results per query
|
56 |
+
search_results = search(query, stop=3, pause=2)
|
57 |
+
|
58 |
+
for result_url in search_results:
|
59 |
+
try:
|
60 |
+
response = requests.get(result_url, timeout=5)
|
61 |
+
if response.status_code == 200:
|
62 |
+
# Extract 6-digit NAICS codes
|
63 |
+
found_codes = re.findall(r'\b\d{6}\b', response.text)
|
64 |
+
naics_codes.update(found_codes)
|
65 |
+
|
66 |
+
# If we find codes, print them
|
67 |
+
if found_codes:
|
68 |
+
print(f" Found codes in {result_url}: {found_codes}")
|
69 |
+
except Exception as e:
|
70 |
+
print(f" β οΈ Error fetching {result_url}: {e}")
|
71 |
except Exception as e:
|
72 |
+
print(f" β οΈ Error with query '{query}': {e}")
|
73 |
+
continue
|
74 |
|
75 |
+
# Return unique codes, limited to 10 most common
|
76 |
+
return list(naics_codes)[:10]
|
77 |
except Exception as e:
|
78 |
+
print(f"β Error performing Google search: {str(e)}")
|
79 |
return []
|
80 |
|
81 |
+
def get_naics_classification(model, company_name: str, context: str, candidates: List[str]) -> dict:
|
82 |
"""
|
83 |
Use Gemini AI to determine the most appropriate NAICS code from candidates
|
84 |
+
First provides reasoning, then returns the NAICS code and explanation
|
85 |
"""
|
86 |
try:
|
87 |
+
print("π€ AI is analyzing NAICS classification...")
|
88 |
+
|
89 |
# If we have candidate codes from Google search
|
90 |
if candidates:
|
91 |
+
# Create a prompt that asks for research on the candidates
|
92 |
prompt = f"""
|
93 |
You are a NAICS code classification expert. Based on the company information provided and the NAICS code candidates found from Google search, determine the most appropriate NAICS code.
|
94 |
|
95 |
Company Name: {company_name}
|
96 |
Context Information: {context}
|
|
|
|
|
97 |
|
98 |
+
NAICS Code Candidates from Google Search: {candidates}
|
|
|
|
|
99 |
|
100 |
+
First, research what these NAICS codes represent:
|
101 |
+
1. For each NAICS code candidate, briefly explain what industry or business activity it corresponds to.
|
102 |
+
2. Then explain which industry classification best matches this company based on the name and context provided.
|
103 |
+
3. Finally, select the single most appropriate NAICS code from the candidates, or suggest a different one if none match.
|
104 |
|
105 |
Your response should be in this format:
|
106 |
+
RESEARCH: [Brief explanation of what each NAICS code represents]
|
107 |
+
REASONING: [Your detailed reasoning about why the chosen industry classification is most appropriate for this company]
|
108 |
+
NAICS_CODE: [6-digit NAICS code]
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
"""
|
110 |
# If no candidates were found from Google search
|
111 |
else:
|
|
|
114 |
|
115 |
Company Name: {company_name}
|
116 |
Context Information: {context}
|
|
|
|
|
|
|
117 |
|
118 |
+
First, analyze what industry this company likely belongs to based on its name and the provided context.
|
119 |
+
Consider standard business classifications and determine the most appropriate category.
|
120 |
+
Then provide the single most appropriate 6-digit NAICS code.
|
|
|
121 |
|
122 |
Your response should be in this format:
|
123 |
+
REASONING: [Your detailed reasoning about the company's industry classification, including what business activities it likely performs]
|
124 |
+
NAICS_CODE: [6-digit NAICS code]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
"""
|
126 |
response = model.generate_content(prompt)
|
127 |
response_text = response.text.strip()
|
128 |
|
129 |
+
# Create result dictionary
|
130 |
+
result = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
+
# Extract research if available
|
133 |
+
if "RESEARCH:" in response_text:
|
134 |
+
research_match = re.search(r'RESEARCH:(.*?)REASONING:', response_text, re.DOTALL | re.IGNORECASE)
|
135 |
+
if research_match:
|
136 |
+
result["research"] = research_match.group(1).strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
|
138 |
+
# Extract reasoning
|
139 |
+
reasoning_match = re.search(r'REASONING:(.*?)NAICS_CODE:', response_text, re.DOTALL | re.IGNORECASE)
|
140 |
+
result["reasoning"] = reasoning_match.group(1).strip() if reasoning_match else "No reasoning provided."
|
141 |
|
142 |
+
# Extract NAICS code
|
143 |
+
naics_match = re.search(r'NAICS_CODE:(.*?)(\d{6})', response_text, re.DOTALL)
|
144 |
if naics_match:
|
145 |
+
result["naics_code"] = naics_match.group(2)
|
146 |
else:
|
147 |
+
# Try to find any 6-digit code in the response
|
148 |
+
code_match = re.search(r'\b(\d{6})\b', response_text)
|
149 |
+
result["naics_code"] = code_match.group(1) if code_match else "000000"
|
150 |
+
|
151 |
+
return result
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
except Exception as e:
|
153 |
+
print(f"β Error getting NAICS classification: {str(e)}")
|
154 |
return {
|
155 |
"naics_code": "000000",
|
156 |
+
"reasoning": f"Error analyzing company: {str(e)}"
|
|
|
|
|
|
|
157 |
}
|
158 |
|
159 |
+
def main():
|
160 |
+
"""Main function to run the NAICS classifier"""
|
161 |
+
print("π NAICS Code Finder\n")
|
162 |
+
|
163 |
+
# Step 1: Get API Key
|
164 |
+
api_key = input("Enter your Google Gemini API Key: ")
|
165 |
+
model = initialize_gemini(api_key)
|
166 |
+
|
167 |
+
while True:
|
168 |
+
# Step 2: Get Company Info
|
169 |
+
company_name = input("\nEnter the company name (or 'exit' to quit): ")
|
170 |
+
if company_name.lower() == 'exit':
|
171 |
+
break
|
172 |
+
|
173 |
+
context = input("Enter a brief description of the company (or press Enter for none): ")
|
174 |
|
175 |
+
# Step 3: Find NAICS Code Candidates
|
176 |
+
naics_candidates = google_search_naics(company_name)
|
177 |
+
|
178 |
if not naics_candidates:
|
179 |
+
print("β No NAICS codes found from Google search.")
|
180 |
+
# Ask Gemini to suggest a code even without candidates
|
181 |
+
result = get_naics_classification(model, company_name, context, [])
|
182 |
else:
|
183 |
+
print(f"β
Found {len(naics_candidates)} NAICS candidates: {naics_candidates}")
|
184 |
+
# Use Gemini to select the best code
|
185 |
+
result = get_naics_classification(model, company_name, context, naics_candidates)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
|
187 |
+
# Display research findings if available
|
188 |
+
if "research" in result:
|
189 |
+
print(f"\nπ NAICS Code Research:\n{result['research']}")
|
190 |
+
|
191 |
+
# Display reasoning
|
192 |
+
print(f"\nπ§ Reasoning:\n{result['reasoning']}")
|
|
|
|
|
|
|
|
|
193 |
|
194 |
+
# Output the NAICS code
|
195 |
+
print(f"\nπ NAICS Code: {result['naics_code']}")
|
196 |
+
print("-" * 80)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
|
198 |
if __name__ == "__main__":
|
199 |
+
main()
|