|
import re |
|
import json |
|
import base64 |
|
import requests |
|
import torch |
|
import uvicorn |
|
import nest_asyncio |
|
from fastapi import FastAPI, HTTPException |
|
from pydantic import BaseModel |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline |
|
from sentence_transformers import SentenceTransformer, models |
|
import gradio as gr |
|
import os |
|
|
|
|
|
|
|
|
|
|
|
|
|
HF_TOKEN = os.environ.get("HF_TOKEN") |
|
GITHUB_TOKEN = os.environ.get("GITHUB_TOKEN") |
|
GEMINI_API_KEY = os.environ.get("GEMINI_API_KEY") |
|
|
|
|
|
|
|
|
|
|
|
|
|
def extract_repo_info(github_url: str): |
|
pattern = r"github\.com/([^/]+)/([^/]+)" |
|
match = re.search(pattern, github_url) |
|
if match: |
|
owner = match.group(1) |
|
repo = match.group(2).replace('.git', '') |
|
return owner, repo |
|
else: |
|
raise ValueError("Invalid GitHub URL provided.") |
|
|
|
def get_repo_metadata(owner: str, repo: str): |
|
headers = {'Authorization': f'token {GITHUB_TOKEN}'} |
|
repo_url = f"https://api.github.com/repos/{owner}/{repo}" |
|
response = requests.get(repo_url, headers=headers) |
|
return response.json() |
|
|
|
def get_repo_tree(owner: str, repo: str, branch: str): |
|
headers = {'Authorization': f'token {GITHUB_TOKEN}'} |
|
tree_url = f"https://api.github.com/repos/{owner}/{repo}/git/trees/{branch}?recursive=1" |
|
response = requests.get(tree_url, headers=headers) |
|
return response.json() |
|
|
|
def get_file_content(owner: str, repo: str, file_path: str): |
|
headers = {'Authorization': f'token {GITHUB_TOKEN}'} |
|
content_url = f"https://api.github.com/repos/{owner}/{repo}/contents/{file_path}" |
|
response = requests.get(content_url, headers=headers) |
|
data = response.json() |
|
if 'content' in data: |
|
return base64.b64decode(data['content']).decode('utf-8') |
|
else: |
|
return None |
|
|
|
|
|
|
|
|
|
|
|
def preprocess_text(text: str) -> str: |
|
cleaned_text = text.strip() |
|
cleaned_text = re.sub(r'\s+', ' ', cleaned_text) |
|
return cleaned_text |
|
|
|
def load_embedding_model(model_name: str = 'huggingface/CodeBERTa-small-v1') -> SentenceTransformer: |
|
transformer_model = models.Transformer(model_name) |
|
pooling_model = models.Pooling(transformer_model.get_word_embedding_dimension(), pooling_mode_mean_tokens=True) |
|
model = SentenceTransformer(modules=[transformer_model, pooling_model]) |
|
return model |
|
|
|
def generate_embedding(text: str, model_name: str = 'huggingface/CodeBERTa-small-v1') -> list: |
|
processed_text = preprocess_text(text) |
|
model = load_embedding_model(model_name) |
|
embedding = model.encode(processed_text) |
|
return embedding |
|
|
|
|
|
|
|
|
|
|
|
def is_detailed_query(query: str) -> bool: |
|
keywords = ["detail", "detailed", "thorough", "in depth", "comprehensive", "extensive"] |
|
return any(keyword in query.lower() for keyword in keywords) |
|
|
|
def generate_prompt(query: str, context_snippets: list) -> str: |
|
context = "\n\n".join(context_snippets) |
|
if is_detailed_query(query): |
|
instruction = "Provide an extremely detailed and thorough explanation of at least 500 words." |
|
else: |
|
instruction = "Answer concisely." |
|
|
|
prompt = ( |
|
f"Below is some context from a GitHub repository:\n\n" |
|
f"{context}\n\n" |
|
f"Based on the above, {instruction}\n{query}\n" |
|
f"Answer:" |
|
) |
|
return prompt |
|
|
|
|
|
def get_gemini_flash_response(prompt: str) -> str: |
|
from google import genai |
|
from google.genai import types |
|
client = genai.Client(api_key=GEMINI_API_KEY) |
|
|
|
|
|
|
|
response = client.models.generate_content( |
|
model="gemini-2.0-flash", |
|
contents=[prompt], |
|
config=types.GenerateContentConfig( |
|
max_output_tokens=500, |
|
temperature=0.1 |
|
) |
|
) |
|
|
|
return response.text |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_file_content_for_choice(github_url: str, file_path: str): |
|
try: |
|
owner, repo = extract_repo_info(github_url) |
|
except Exception as e: |
|
return str(e) |
|
content = get_file_content(owner, repo, file_path) |
|
return content, file_path |
|
|
|
def chat_with_file(github_url: str, file_path: str, user_query: str): |
|
|
|
result = get_file_content_for_choice(github_url, file_path) |
|
if isinstance(result, str): |
|
return result |
|
file_content, selected_file = result |
|
|
|
|
|
preprocessed = preprocess_text(file_content) |
|
context_snippet = preprocessed[:5000] |
|
|
|
|
|
prompt = generate_prompt(user_query, [context_snippet]) |
|
|
|
|
|
llm_response = get_gemini_flash_response(prompt) |
|
|
|
return f"File: {selected_file}\n\nLLM Response:\n{llm_response}" |
|
|
|
|
|
def load_repo_contents_backend(github_url: str): |
|
try: |
|
owner, repo = extract_repo_info(github_url) |
|
except Exception as e: |
|
return f"Error: {str(e)}" |
|
repo_data = get_repo_metadata(owner, repo) |
|
default_branch = repo_data.get("default_branch", "main") |
|
tree_data = get_repo_tree(owner, repo, default_branch) |
|
if "tree" not in tree_data: |
|
return "Error: Could not fetch repository tree." |
|
file_list = [item["path"] for item in tree_data["tree"] if item["type"] == "blob"] |
|
return file_list |
|
|
|
|
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# RepoChat - Chat with Repository Files") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
gr.Markdown("### Repository Information") |
|
github_url_input = gr.Textbox(label="GitHub Repository URL", placeholder="https://github.com/username/repository") |
|
load_repo_btn = gr.Button("Load Repository Contents") |
|
|
|
file_dropdown = gr.Dropdown(label="Select a File", interactive=True, value="", choices=[]) |
|
|
|
repo_content_output = gr.Chatbot(label="Chat Conversation") |
|
with gr.Column(scale=2): |
|
gr.Markdown("### Chat Interface") |
|
chat_query_input = gr.Textbox(label="Your Query", placeholder="Type your query here") |
|
|
|
chat_output = gr.Chatbot(label="File Content") |
|
|
|
chat_btn = gr.Button("Send Query") |
|
|
|
|
|
def update_file_dropdown(github_url): |
|
files = load_repo_contents_backend(github_url) |
|
if isinstance(files, str): |
|
print("Error loading files:", files) |
|
return gr.update(choices=[], value="") |
|
print("Files loaded:", files) |
|
|
|
return gr.update(choices=files, value="") |
|
|
|
load_repo_btn.click(fn=update_file_dropdown, inputs=[github_url_input], outputs=[file_dropdown]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def update_repo_content(github_url, file_choice): |
|
if not file_choice: |
|
return [("System", "No file selected.")] |
|
content, _ = get_file_content_for_choice(github_url, file_choice) |
|
|
|
return [("File Content", content)] |
|
|
|
|
|
file_dropdown.change(fn=update_repo_content, inputs=[github_url_input, file_dropdown], outputs=[repo_content_output]) |
|
|
|
|
|
def process_chat(github_url, file_choice, chat_query): |
|
if not file_choice: |
|
return "Please select a file first." |
|
return chat_with_file(github_url, file_choice, chat_query) |
|
|
|
chat_btn.click(fn=process_chat, inputs=[github_url_input, file_dropdown, chat_query_input], outputs=[chat_output]) |
|
|
|
demo.launch(share=True) |
|
|
|
|