File size: 5,156 Bytes
36f0d8c 01520ed 1e29566 01520ed 087a1f7 01520ed 36f0d8c 1adf3a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
import gradio as gr
import requests
import datadog_api_client
from PIL import Image
def check_liveness(frame):
url = "http://127.0.0.1:8080/check_liveness"
file = {'file': open(frame, 'rb')}
r = requests.post(url=url, files=file)
result = r.json().get('face_state').get('result')
html = None
faces = None
if r.json().get('face_state').get('is_not_front') is not None:
liveness_score = r.json().get('face_state').get('liveness_score')
eye_closed = r.json().get('face_state').get('eye_closed')
is_boundary_face = r.json().get('face_state').get('is_boundary_face')
is_not_front = r.json().get('face_state').get('is_not_front')
is_occluded = r.json().get('face_state').get('is_occluded')
is_small = r.json().get('face_state').get('is_small')
luminance = r.json().get('face_state').get('luminance')
mouth_opened = r.json().get('face_state').get('mouth_opened')
quality = r.json().get('face_state').get('quality')
html = ("<table>"
"<tr>"
"<th>Face State</th>"
"<th>Value</th>"
"</tr>"
"<tr>"
"<td>Result</td>"
"<td>{result}</td>"
"</tr>"
"<tr>"
"<td>Liveness Score</td>"
"<td>{liveness_score}</td>"
"</tr>"
"<tr>"
"<td>Quality</td>"
"<td>{quality}</td>"
"</tr>"
"<tr>"
"<td>Luminance</td>"
"<td>{luminance}</td>"
"</tr>"
"<tr>"
"<td>Is Small</td>"
"<td>{is_small}</td>"
"</tr>"
"<tr>"
"<td>Is Boundary</td>"
"<td>{is_boundary_face}</td>"
"</tr>"
"<tr>"
"<td>Is Not Front</td>"
"<td>{is_not_front}</td>"
"</tr>"
"<tr>"
"<td>Face Occluded</td>"
"<td>{is_occluded}</td>"
"</tr>"
"<tr>"
"<td>Eye Closed</td>"
"<td>{eye_closed}</td>"
"</tr>"
"<tr>"
"<td>Mouth Opened</td>"
"<td>{mouth_opened}</td>"
"</tr>"
"</table>".format(liveness_score=liveness_score, quality=quality, luminance=luminance, is_small=is_small, is_boundary_face=is_boundary_face,
is_not_front=is_not_front, is_occluded=is_occluded, eye_closed=eye_closed, mouth_opened=mouth_opened, result=result))
else:
html = ("<table>"
"<tr>"
"<th>Face State</th>"
"<th>Value</th>"
"</tr>"
"<tr>"
"<td>Result</td>"
"<td>{result}</td>"
"</tr>"
"</table>".format(result=result))
try:
image = Image.open(frame)
for face in r.json().get('faces'):
x1 = face.get('x1')
y1 = face.get('y1')
x2 = face.get('x2')
y2 = face.get('y2')
if x1 < 0:
x1 = 0
if y1 < 0:
y1 = 0
if x2 >= image.width:
x2 = image.width - 1
if y2 >= image.height:
y2 = image.height - 1
face_image = image.crop((x1, y1, x2, y2))
face_image_ratio = face_image.width / float(face_image.height)
resized_w = int(face_image_ratio * 150)
resized_h = 150
face_image = face_image.resize((int(resized_w), int(resized_h)))
if faces is None:
faces = face_image
else:
new_image = Image.new('RGB',(faces.width + face_image.width + 10, 150), (80,80,80))
new_image.paste(faces,(0,0))
new_image.paste(face_image,(faces.width + 10, 0))
faces = new_image.copy()
except:
pass
return [faces, html]
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
live_image_input = gr.Image(type='filepath')
gr.Examples(['live_examples/1.jpg', 'live_examples/2.jpg', 'live_examples/3.jpg', 'live_examples/4.jpg'],
inputs=live_image_input)
check_liveness_button = gr.Button("Check Liveness", variant="primary", size="lg")
with gr.Column():
liveness_face_output = gr.Image(type="pil").style(height=150)
livness_result_output = gr.HTML()
check_liveness_button.click(check_liveness, inputs=live_image_input, outputs=[liveness_face_output, livness_result_output])
demo.launch(server_name="0.0.0.0", server_port=7860) |