File size: 3,950 Bytes
4d6e8c2
 
 
 
 
 
 
 
 
3d612f9
 
 
 
 
 
4d6e8c2
 
3d612f9
1c33274
70f5f26
3d612f9
 
1c33274
70f5f26
4d6e8c2
 
70f5f26
 
 
 
 
4d6e8c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d612f9
 
 
 
 
 
4d6e8c2
 
 
 
 
 
 
76fccaf
 
4d6e8c2
 
 
 
70f5f26
 
 
 
 
3d612f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d6e8c2
3d612f9
4d6e8c2
70f5f26
 
 
 
 
4d6e8c2
 
 
 
 
 
 
 
 
 
 
 
70f5f26
4d6e8c2
 
 
 
1c33274
4d6e8c2
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import random

from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info


import tensorflow as tf
from huggingface_hub import hf_hub_download
from transformers import ElectraTokenizer


router = APIRouter()

DESCRIPTION = "Electra with balanced dataset"
ROUTE = "/text"



@router.post(ROUTE, tags=["Text Task"], 
             description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
    """
    Evaluate text classification for climate disinformation detection.
    
    Current Model: Random Baseline
    - Makes random predictions from the label space (0-7)
    - Used as a baseline for comparison
    """
    # Get space info
    username, space_url = get_space_info()

    # Define the label mapping
    LABEL_MAPPING = {
        "0_not_relevant": 0,
        "1_not_happening": 1,
        "2_not_human": 2,
        "3_not_bad": 3,
        "4_solutions_harmful_unnecessary": 4,
        "5_science_unreliable": 5,
        "6_proponents_biased": 6,
        "7_fossil_fuels_needed": 7
    }

    # Download our pre-trained model from Hugging Face
    model_path = hf_hub_download(repo_id="julianaconsuegra/electra-base-climate-disinformation", filename="tf_model.h5")

    # Load the model
    model = tf.keras.models.load_model(model_path)

    # Load and prepare the dataset
    dataset = load_dataset(request.dataset_name)

    # Convert string labels to integers
    dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})

    # Split dataset
    train_test = dataset["train"]
    test_dataset = dataset["test"]
    
    # Start tracking emissions
    tracker.start()
    tracker.start_task("inference")

    #--------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE CODE HERE
    # Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
    #--------------------------------------------------------------------------------------------   
    # Load ELECTRA tokenizer
    tokenizer = ElectraTokenizer.from_pretrained("google/electra-base-discriminator")
    
    # Tokenize test data with same parameters as training
    inputs = tokenizer(
        test_dataset["text"],
        truncation=True,
        padding="max_length",
        return_tensors="tf"
    )
    
    # Run model prediction
    logits = model.predict({
        "input_ids": inputs["input_ids"],
        "attention_mask": inputs["attention_mask"]
    })
    predictions = tf.argmax(logits, axis=1).numpy()
    
    # Get ground truth labels
    true_labels = test_dataset["label"]

    #--------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE STOPS HERE
    #--------------------------------------------------------------------------------------------   

    
    # Stop tracking emissions
    emissions_data = tracker.stop_task()
    
    # Calculate accuracy
    accuracy = accuracy_score(true_labels, predictions)
    
    # Prepare results dictionary
    results = {
        "username": username,
        "space_url": space_url,
        "submission_timestamp": datetime.now().isoformat(),
        "model_description": DESCRIPTION,
        "accuracy": float(accuracy),
        "energy_consumed_wh": emissions_data.energy_consumed * 1000,
        "emissions_gco2eq": emissions_data.emissions * 1000,
        "emissions_data": clean_emissions_data(emissions_data),
        "api_route": ROUTE,
        "dataset_config": {
            "dataset_name": request.dataset_name,
            "test_size": request.test_size,
            "test_seed": request.test_seed
        }
    }
    
    return results