Spaces:
Sleeping
Sleeping
Create normal_distribution.py
Browse files- tools/normal_distribution.py +80 -0
tools/normal_distribution.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import math
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
|
5 |
+
def generate_normal_distribution(mean: float, std_dev: float, count: int = 10000)->list:
|
6 |
+
"""Generate a list of random numbers from a normal distribution.
|
7 |
+
|
8 |
+
This function generates a list of random numbers drawn from a normal
|
9 |
+
distribution specified by the mean and standard deviation.
|
10 |
+
|
11 |
+
Args:
|
12 |
+
mean: The mean (average) of the normal distribution.
|
13 |
+
std_dev: The standard deviation of the normal distribution.
|
14 |
+
count: The number of random samples to generate (default: 10000).
|
15 |
+
|
16 |
+
Returns:
|
17 |
+
list: A list of samples drawn from the specified normal distribution.
|
18 |
+
"""
|
19 |
+
samples = []
|
20 |
+
|
21 |
+
for _ in range(count // 2): # Generate pairs of samples
|
22 |
+
u1 = random.random()
|
23 |
+
u2 = random.random()
|
24 |
+
|
25 |
+
# Box-Muller transform
|
26 |
+
z0 = math.sqrt(-2.0 * math.log(u1)) * math.cos(2.0 * math.pi * u2)
|
27 |
+
z1 = math.sqrt(-2.0 * math.log(u1)) * math.sin(2.0 * math.pi * u2)
|
28 |
+
|
29 |
+
# Scale and shift to the specified mean and standard deviation
|
30 |
+
samples.append(z0 * std_dev + mean)
|
31 |
+
samples.append(z1 * std_dev + mean)
|
32 |
+
|
33 |
+
return samples
|
34 |
+
|
35 |
+
def create_histogram_and_theorical_pdf(mean: float, std_dev:float, random_numbers:list)->None:
|
36 |
+
"""Generate a histogram of random numbers and overlay the theoretical
|
37 |
+
probability density function (PDF) of a normal distribution.
|
38 |
+
Return the histogram as a base64-encoded string.
|
39 |
+
|
40 |
+
Args:
|
41 |
+
mean: The mean (average) of the normal distribution.
|
42 |
+
std_dev: The standard deviation of the normal distribution.
|
43 |
+
random_numbers: A list of random numbers generated from a
|
44 |
+
normal distribution.
|
45 |
+
"""
|
46 |
+
# Prepare data for plotting
|
47 |
+
hist_data = [0] * 50 # Create a list to hold histogram data
|
48 |
+
min_value = min(random_numbers)
|
49 |
+
max_value = max(random_numbers)
|
50 |
+
bin_width = (max_value - min_value) / len(hist_data)
|
51 |
+
|
52 |
+
# Fill histogram data
|
53 |
+
for number in random_numbers:
|
54 |
+
bin_index = int((number - min_value) / bin_width)
|
55 |
+
if bin_index >= len(hist_data):
|
56 |
+
bin_index = len(hist_data) - 1
|
57 |
+
hist_data[bin_index] += 1
|
58 |
+
|
59 |
+
# Normalize histogram data
|
60 |
+
hist_data = [count / len(random_numbers) / bin_width for count in hist_data]
|
61 |
+
|
62 |
+
# Prepare x values for the theoretical PDF
|
63 |
+
x_values = [min_value + i * bin_width for i in range(len(hist_data))]
|
64 |
+
|
65 |
+
# Calculate the corresponding y values for the theoretical normal distribution
|
66 |
+
pdf_values = [
|
67 |
+
(1 / (std_dev * math.sqrt(2 * math.pi))) * math.exp(-0.5 * ((x - mean) / std_dev) ** 2) \
|
68 |
+
for x in x_values
|
69 |
+
]
|
70 |
+
|
71 |
+
# Plotting
|
72 |
+
plt.figure(figsize=(10, 6))
|
73 |
+
plt.bar(x_values, hist_data, width=bin_width, alpha=0.6, color='g', label='Histogram')
|
74 |
+
plt.plot(x_values, pdf_values, 'k', linewidth=2, label='Theoretical PDF')
|
75 |
+
|
76 |
+
plt.title(f'Histogram of {len(random_numbers)} Random Numbers\nMean: {mean}, Std Dev: {std_dev}')
|
77 |
+
plt.xlabel('Value')
|
78 |
+
plt.ylabel('Density')
|
79 |
+
plt.legend()
|
80 |
+
plt.grid()
|