File size: 4,241 Bytes
4c1d330
 
 
 
 
 
 
 
 
 
 
 
188ed7e
 
4c1d330
 
 
 
 
 
 
28d6d09
4c1d330
 
 
 
 
 
28d6d09
4c1d330
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28d6d09
4c1d330
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
188ed7e
4c1d330
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import os
import numpy as np
import torch as th
from imageio import imread
from skimage.transform import resize as imresize

from ema_pytorch import EMA
from decomp_diffusion.model_and_diffusion_util import *
from decomp_diffusion.diffusion.respace import SpacedDiffusion
from decomp_diffusion.gen_image import *
from download import download_model

import gradio as gr

# fix randomness
th.manual_seed(0)
np.random.seed(0)


def get_pil_im(im, resolution=64):
    im = imresize(im, (resolution, resolution))[:, :, :3]
    im = th.Tensor(im).permute(2, 0, 1)[None, :, :, :].contiguous()
    return im


# generate image components and reconstruction
def gen_image_and_components(model, gd, im, num_components=4, sample_method='ddim', batch_size=1, image_size=64, device='cuda', num_images=1):
    """Generate row of orig image, individual components, and reconstructed image"""
    orig_img = get_pil_im(im, resolution=image_size).to(device)
    latent = model.encode_latent(orig_img)
    model_kwargs = {'latent': latent}

    assert sample_method in ('ddpm', 'ddim')
    sample_loop_func = gd.p_sample_loop if sample_method == 'ddpm' else gd.ddim_sample_loop
    if sample_method == 'ddim':
        model = gd._wrap_model(model)
        
    # generate imgs
    for i in range(num_images):
        all_samples = [orig_img]
        # individual components
        for j in range(num_components):
            model_kwargs['latent_index'] = j
            sample = sample_loop_func(
                model,
                (batch_size, 3, image_size, image_size),
                device=device,
                clip_denoised=True,
                progress=True,
                model_kwargs=model_kwargs,
                cond_fn=None,
            )[:batch_size]

            # save indiv comp
            all_samples.append(sample)
        # reconstruction
        model_kwargs['latent_index'] = None
        sample = sample_loop_func(
            model,
            (batch_size, 3, image_size, image_size),
            device=device,
            clip_denoised=True,
            progress=True,
            model_kwargs=model_kwargs,
            cond_fn=None,
        )[:batch_size]
        # save indiv reconstruction
        all_samples.append(sample)

        samples = th.cat(all_samples, dim=0).cpu()   
        grid = make_grid(samples, nrow=samples.shape[0], padding=0)
        return grid
        

def decompose_image(im):
    sample_method = 'ddim'
    result = gen_image_and_components(clevr_model, GD[sample_method], im, sample_method=sample_method, num_images=1, device=device)
    return result.permute(1, 2, 0).numpy()


# load diffusion
GD = {} # diffusion objects for ddim and ddpm
diffusion_kwargs = diffusion_defaults()
gd = create_gaussian_diffusion(**diffusion_kwargs)
GD['ddpm'] = gd

# set up ddim sampling
desired_timesteps = 50 
num_timesteps = diffusion_kwargs['steps']

spacing = num_timesteps // desired_timesteps
spaced_ts = list(range(0, num_timesteps + 1, spacing))
betas = get_named_beta_schedule(diffusion_kwargs['noise_schedule'], num_timesteps)
diffusion_kwargs['betas'] = betas
del diffusion_kwargs['steps'], diffusion_kwargs['noise_schedule']
gd = SpacedDiffusion(spaced_ts, rescale_timesteps=True, original_num_steps=num_timesteps, **diffusion_kwargs)

GD['ddim'] = gd


# !wget https://www.dropbox.com/s/bqpc3ymstz9m05z/clevr_model.pt
# load model

ckpt_path = download_model('clevr') # 'clevr_model.pt'

model_kwargs = unet_model_defaults()
# model parameters
model_kwargs.update(dict(
    emb_dim=64,
    enc_channels=128
))
clevr_model = create_diffusion_model(**model_kwargs)
clevr_model.eval()

device = 'cuda' if th.cuda.is_available() else 'cpu'
clevr_model.to(device)

print(f'loading from {ckpt_path}')
checkpoint = th.load(ckpt_path, map_location='cpu')

clevr_model.load_state_dict(checkpoint)



img_input =  gr.inputs.Image(type="numpy", label="Input")
img_output = gr.outputs.Image(type="numpy", label="Output")

gr.Interface(
    decompose_image,
    inputs=img_input,
    outputs=img_output,
    examples=[
        os.path.join(os.path.dirname(__file__), "sample_images/clevr_im_10.png"),
        os.path.join(os.path.dirname(__file__), "sample_images/clevr_im_25.png"),
    ],

).launch()