Spaces:
Building
Building
File size: 14,945 Bytes
74027ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 |
from typing import Optional, List, Dict, Any, Union
import logging
from pinecone import Pinecone, ServerlessSpec
from open_webui.retrieval.vector.main import (
VectorDBBase,
VectorItem,
SearchResult,
GetResult,
)
from open_webui.config import (
PINECONE_API_KEY,
PINECONE_ENVIRONMENT,
PINECONE_INDEX_NAME,
PINECONE_DIMENSION,
PINECONE_METRIC,
PINECONE_CLOUD,
)
from open_webui.env import SRC_LOG_LEVELS
NO_LIMIT = 10000 # Reasonable limit to avoid overwhelming the system
BATCH_SIZE = 100 # Recommended batch size for Pinecone operations
log = logging.getLogger(__name__)
log.setLevel(SRC_LOG_LEVELS["RAG"])
class PineconeClient(VectorDBBase):
def __init__(self):
self.collection_prefix = "open-webui"
# Validate required configuration
self._validate_config()
# Store configuration values
self.api_key = PINECONE_API_KEY
self.environment = PINECONE_ENVIRONMENT
self.index_name = PINECONE_INDEX_NAME
self.dimension = PINECONE_DIMENSION
self.metric = PINECONE_METRIC
self.cloud = PINECONE_CLOUD
# Initialize Pinecone client
self.client = Pinecone(api_key=self.api_key)
# Create index if it doesn't exist
self._initialize_index()
def _validate_config(self) -> None:
"""Validate that all required configuration variables are set."""
missing_vars = []
if not PINECONE_API_KEY:
missing_vars.append("PINECONE_API_KEY")
if not PINECONE_ENVIRONMENT:
missing_vars.append("PINECONE_ENVIRONMENT")
if not PINECONE_INDEX_NAME:
missing_vars.append("PINECONE_INDEX_NAME")
if not PINECONE_DIMENSION:
missing_vars.append("PINECONE_DIMENSION")
if not PINECONE_CLOUD:
missing_vars.append("PINECONE_CLOUD")
if missing_vars:
raise ValueError(
f"Required configuration missing: {', '.join(missing_vars)}"
)
def _initialize_index(self) -> None:
"""Initialize the Pinecone index."""
try:
# Check if index exists
if self.index_name not in self.client.list_indexes().names():
log.info(f"Creating Pinecone index '{self.index_name}'...")
self.client.create_index(
name=self.index_name,
dimension=self.dimension,
metric=self.metric,
spec=ServerlessSpec(cloud=self.cloud, region=self.environment),
)
log.info(f"Successfully created Pinecone index '{self.index_name}'")
else:
log.info(f"Using existing Pinecone index '{self.index_name}'")
# Connect to the index
self.index = self.client.Index(self.index_name)
except Exception as e:
log.error(f"Failed to initialize Pinecone index: {e}")
raise RuntimeError(f"Failed to initialize Pinecone index: {e}")
def _create_points(
self, items: List[VectorItem], collection_name_with_prefix: str
) -> List[Dict[str, Any]]:
"""Convert VectorItem objects to Pinecone point format."""
points = []
for item in items:
# Start with any existing metadata or an empty dict
metadata = item.get("metadata", {}).copy() if item.get("metadata") else {}
# Add text to metadata if available
if "text" in item:
metadata["text"] = item["text"]
# Always add collection_name to metadata for filtering
metadata["collection_name"] = collection_name_with_prefix
point = {
"id": item["id"],
"values": item["vector"],
"metadata": metadata,
}
points.append(point)
return points
def _get_collection_name_with_prefix(self, collection_name: str) -> str:
"""Get the collection name with prefix."""
return f"{self.collection_prefix}_{collection_name}"
def _normalize_distance(self, score: float) -> float:
"""Normalize distance score based on the metric used."""
if self.metric.lower() == "cosine":
# Cosine similarity ranges from -1 to 1, normalize to 0 to 1
return (score + 1.0) / 2.0
elif self.metric.lower() in ["euclidean", "dotproduct"]:
# These are already suitable for ranking (smaller is better for Euclidean)
return score
else:
# For other metrics, use as is
return score
def _result_to_get_result(self, matches: list) -> GetResult:
"""Convert Pinecone matches to GetResult format."""
ids = []
documents = []
metadatas = []
for match in matches:
metadata = match.get("metadata", {})
ids.append(match["id"])
documents.append(metadata.get("text", ""))
metadatas.append(metadata)
return GetResult(
**{
"ids": [ids],
"documents": [documents],
"metadatas": [metadatas],
}
)
def has_collection(self, collection_name: str) -> bool:
"""Check if a collection exists by searching for at least one item."""
collection_name_with_prefix = self._get_collection_name_with_prefix(
collection_name
)
try:
# Search for at least 1 item with this collection name in metadata
response = self.index.query(
vector=[0.0] * self.dimension, # dummy vector
top_k=1,
filter={"collection_name": collection_name_with_prefix},
include_metadata=False,
)
return len(response.matches) > 0
except Exception as e:
log.exception(
f"Error checking collection '{collection_name_with_prefix}': {e}"
)
return False
def delete_collection(self, collection_name: str) -> None:
"""Delete a collection by removing all vectors with the collection name in metadata."""
collection_name_with_prefix = self._get_collection_name_with_prefix(
collection_name
)
try:
self.index.delete(filter={"collection_name": collection_name_with_prefix})
log.info(
f"Collection '{collection_name_with_prefix}' deleted (all vectors removed)."
)
except Exception as e:
log.warning(
f"Failed to delete collection '{collection_name_with_prefix}': {e}"
)
raise
def insert(self, collection_name: str, items: List[VectorItem]) -> None:
"""Insert vectors into a collection."""
if not items:
log.warning("No items to insert")
return
collection_name_with_prefix = self._get_collection_name_with_prefix(
collection_name
)
points = self._create_points(items, collection_name_with_prefix)
# Insert in batches for better performance and reliability
for i in range(0, len(points), BATCH_SIZE):
batch = points[i : i + BATCH_SIZE]
try:
self.index.upsert(vectors=batch)
log.debug(
f"Inserted batch of {len(batch)} vectors into '{collection_name_with_prefix}'"
)
except Exception as e:
log.error(
f"Error inserting batch into '{collection_name_with_prefix}': {e}"
)
raise
log.info(
f"Successfully inserted {len(items)} vectors into '{collection_name_with_prefix}'"
)
def upsert(self, collection_name: str, items: List[VectorItem]) -> None:
"""Upsert (insert or update) vectors into a collection."""
if not items:
log.warning("No items to upsert")
return
collection_name_with_prefix = self._get_collection_name_with_prefix(
collection_name
)
points = self._create_points(items, collection_name_with_prefix)
# Upsert in batches
for i in range(0, len(points), BATCH_SIZE):
batch = points[i : i + BATCH_SIZE]
try:
self.index.upsert(vectors=batch)
log.debug(
f"Upserted batch of {len(batch)} vectors into '{collection_name_with_prefix}'"
)
except Exception as e:
log.error(
f"Error upserting batch into '{collection_name_with_prefix}': {e}"
)
raise
log.info(
f"Successfully upserted {len(items)} vectors into '{collection_name_with_prefix}'"
)
def search(
self, collection_name: str, vectors: List[List[Union[float, int]]], limit: int
) -> Optional[SearchResult]:
"""Search for similar vectors in a collection."""
if not vectors or not vectors[0]:
log.warning("No vectors provided for search")
return None
collection_name_with_prefix = self._get_collection_name_with_prefix(
collection_name
)
if limit is None or limit <= 0:
limit = NO_LIMIT
try:
# Search using the first vector (assuming this is the intended behavior)
query_vector = vectors[0]
# Perform the search
query_response = self.index.query(
vector=query_vector,
top_k=limit,
include_metadata=True,
filter={"collection_name": collection_name_with_prefix},
)
if not query_response.matches:
# Return empty result if no matches
return SearchResult(
ids=[[]],
documents=[[]],
metadatas=[[]],
distances=[[]],
)
# Convert to GetResult format
get_result = self._result_to_get_result(query_response.matches)
# Calculate normalized distances based on metric
distances = [
[
self._normalize_distance(match.score)
for match in query_response.matches
]
]
return SearchResult(
ids=get_result.ids,
documents=get_result.documents,
metadatas=get_result.metadatas,
distances=distances,
)
except Exception as e:
log.error(f"Error searching in '{collection_name_with_prefix}': {e}")
return None
def query(
self, collection_name: str, filter: Dict, limit: Optional[int] = None
) -> Optional[GetResult]:
"""Query vectors by metadata filter."""
collection_name_with_prefix = self._get_collection_name_with_prefix(
collection_name
)
if limit is None or limit <= 0:
limit = NO_LIMIT
try:
# Create a zero vector for the dimension as Pinecone requires a vector
zero_vector = [0.0] * self.dimension
# Combine user filter with collection_name
pinecone_filter = {"collection_name": collection_name_with_prefix}
if filter:
pinecone_filter.update(filter)
# Perform metadata-only query
query_response = self.index.query(
vector=zero_vector,
filter=pinecone_filter,
top_k=limit,
include_metadata=True,
)
return self._result_to_get_result(query_response.matches)
except Exception as e:
log.error(f"Error querying collection '{collection_name}': {e}")
return None
def get(self, collection_name: str) -> Optional[GetResult]:
"""Get all vectors in a collection."""
collection_name_with_prefix = self._get_collection_name_with_prefix(
collection_name
)
try:
# Use a zero vector for fetching all entries
zero_vector = [0.0] * self.dimension
# Add filter to only get vectors for this collection
query_response = self.index.query(
vector=zero_vector,
top_k=NO_LIMIT,
include_metadata=True,
filter={"collection_name": collection_name_with_prefix},
)
return self._result_to_get_result(query_response.matches)
except Exception as e:
log.error(f"Error getting collection '{collection_name}': {e}")
return None
def delete(
self,
collection_name: str,
ids: Optional[List[str]] = None,
filter: Optional[Dict] = None,
) -> None:
"""Delete vectors by IDs or filter."""
collection_name_with_prefix = self._get_collection_name_with_prefix(
collection_name
)
try:
if ids:
# Delete by IDs (in batches for large deletions)
for i in range(0, len(ids), BATCH_SIZE):
batch_ids = ids[i : i + BATCH_SIZE]
# Note: When deleting by ID, we can't filter by collection_name
# This is a limitation of Pinecone - be careful with ID uniqueness
self.index.delete(ids=batch_ids)
log.debug(
f"Deleted batch of {len(batch_ids)} vectors by ID from '{collection_name_with_prefix}'"
)
log.info(
f"Successfully deleted {len(ids)} vectors by ID from '{collection_name_with_prefix}'"
)
elif filter:
# Combine user filter with collection_name
pinecone_filter = {"collection_name": collection_name_with_prefix}
if filter:
pinecone_filter.update(filter)
# Delete by metadata filter
self.index.delete(filter=pinecone_filter)
log.info(
f"Successfully deleted vectors by filter from '{collection_name_with_prefix}'"
)
else:
log.warning("No ids or filter provided for delete operation")
except Exception as e:
log.error(f"Error deleting from collection '{collection_name}': {e}")
raise
def reset(self) -> None:
"""Reset the database by deleting all collections."""
try:
self.index.delete(delete_all=True)
log.info("All vectors successfully deleted from the index.")
except Exception as e:
log.error(f"Failed to reset Pinecone index: {e}")
raise
|