File size: 14,945 Bytes
74027ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
from typing import Optional, List, Dict, Any, Union
import logging
from pinecone import Pinecone, ServerlessSpec

from open_webui.retrieval.vector.main import (
    VectorDBBase,
    VectorItem,
    SearchResult,
    GetResult,
)
from open_webui.config import (
    PINECONE_API_KEY,
    PINECONE_ENVIRONMENT,
    PINECONE_INDEX_NAME,
    PINECONE_DIMENSION,
    PINECONE_METRIC,
    PINECONE_CLOUD,
)
from open_webui.env import SRC_LOG_LEVELS

NO_LIMIT = 10000  # Reasonable limit to avoid overwhelming the system
BATCH_SIZE = 100  # Recommended batch size for Pinecone operations

log = logging.getLogger(__name__)
log.setLevel(SRC_LOG_LEVELS["RAG"])


class PineconeClient(VectorDBBase):
    def __init__(self):
        self.collection_prefix = "open-webui"

        # Validate required configuration
        self._validate_config()

        # Store configuration values
        self.api_key = PINECONE_API_KEY
        self.environment = PINECONE_ENVIRONMENT
        self.index_name = PINECONE_INDEX_NAME
        self.dimension = PINECONE_DIMENSION
        self.metric = PINECONE_METRIC
        self.cloud = PINECONE_CLOUD

        # Initialize Pinecone client
        self.client = Pinecone(api_key=self.api_key)

        # Create index if it doesn't exist
        self._initialize_index()

    def _validate_config(self) -> None:
        """Validate that all required configuration variables are set."""
        missing_vars = []
        if not PINECONE_API_KEY:
            missing_vars.append("PINECONE_API_KEY")
        if not PINECONE_ENVIRONMENT:
            missing_vars.append("PINECONE_ENVIRONMENT")
        if not PINECONE_INDEX_NAME:
            missing_vars.append("PINECONE_INDEX_NAME")
        if not PINECONE_DIMENSION:
            missing_vars.append("PINECONE_DIMENSION")
        if not PINECONE_CLOUD:
            missing_vars.append("PINECONE_CLOUD")

        if missing_vars:
            raise ValueError(
                f"Required configuration missing: {', '.join(missing_vars)}"
            )

    def _initialize_index(self) -> None:
        """Initialize the Pinecone index."""
        try:
            # Check if index exists
            if self.index_name not in self.client.list_indexes().names():
                log.info(f"Creating Pinecone index '{self.index_name}'...")
                self.client.create_index(
                    name=self.index_name,
                    dimension=self.dimension,
                    metric=self.metric,
                    spec=ServerlessSpec(cloud=self.cloud, region=self.environment),
                )
                log.info(f"Successfully created Pinecone index '{self.index_name}'")
            else:
                log.info(f"Using existing Pinecone index '{self.index_name}'")

            # Connect to the index
            self.index = self.client.Index(self.index_name)

        except Exception as e:
            log.error(f"Failed to initialize Pinecone index: {e}")
            raise RuntimeError(f"Failed to initialize Pinecone index: {e}")

    def _create_points(
        self, items: List[VectorItem], collection_name_with_prefix: str
    ) -> List[Dict[str, Any]]:
        """Convert VectorItem objects to Pinecone point format."""
        points = []
        for item in items:
            # Start with any existing metadata or an empty dict
            metadata = item.get("metadata", {}).copy() if item.get("metadata") else {}

            # Add text to metadata if available
            if "text" in item:
                metadata["text"] = item["text"]

            # Always add collection_name to metadata for filtering
            metadata["collection_name"] = collection_name_with_prefix

            point = {
                "id": item["id"],
                "values": item["vector"],
                "metadata": metadata,
            }
            points.append(point)
        return points

    def _get_collection_name_with_prefix(self, collection_name: str) -> str:
        """Get the collection name with prefix."""
        return f"{self.collection_prefix}_{collection_name}"

    def _normalize_distance(self, score: float) -> float:
        """Normalize distance score based on the metric used."""
        if self.metric.lower() == "cosine":
            # Cosine similarity ranges from -1 to 1, normalize to 0 to 1
            return (score + 1.0) / 2.0
        elif self.metric.lower() in ["euclidean", "dotproduct"]:
            # These are already suitable for ranking (smaller is better for Euclidean)
            return score
        else:
            # For other metrics, use as is
            return score

    def _result_to_get_result(self, matches: list) -> GetResult:
        """Convert Pinecone matches to GetResult format."""
        ids = []
        documents = []
        metadatas = []

        for match in matches:
            metadata = match.get("metadata", {})
            ids.append(match["id"])
            documents.append(metadata.get("text", ""))
            metadatas.append(metadata)

        return GetResult(
            **{
                "ids": [ids],
                "documents": [documents],
                "metadatas": [metadatas],
            }
        )

    def has_collection(self, collection_name: str) -> bool:
        """Check if a collection exists by searching for at least one item."""
        collection_name_with_prefix = self._get_collection_name_with_prefix(
            collection_name
        )

        try:
            # Search for at least 1 item with this collection name in metadata
            response = self.index.query(
                vector=[0.0] * self.dimension,  # dummy vector
                top_k=1,
                filter={"collection_name": collection_name_with_prefix},
                include_metadata=False,
            )
            return len(response.matches) > 0
        except Exception as e:
            log.exception(
                f"Error checking collection '{collection_name_with_prefix}': {e}"
            )
            return False

    def delete_collection(self, collection_name: str) -> None:
        """Delete a collection by removing all vectors with the collection name in metadata."""
        collection_name_with_prefix = self._get_collection_name_with_prefix(
            collection_name
        )
        try:
            self.index.delete(filter={"collection_name": collection_name_with_prefix})
            log.info(
                f"Collection '{collection_name_with_prefix}' deleted (all vectors removed)."
            )
        except Exception as e:
            log.warning(
                f"Failed to delete collection '{collection_name_with_prefix}': {e}"
            )
            raise

    def insert(self, collection_name: str, items: List[VectorItem]) -> None:
        """Insert vectors into a collection."""
        if not items:
            log.warning("No items to insert")
            return

        collection_name_with_prefix = self._get_collection_name_with_prefix(
            collection_name
        )
        points = self._create_points(items, collection_name_with_prefix)

        # Insert in batches for better performance and reliability
        for i in range(0, len(points), BATCH_SIZE):
            batch = points[i : i + BATCH_SIZE]
            try:
                self.index.upsert(vectors=batch)
                log.debug(
                    f"Inserted batch of {len(batch)} vectors into '{collection_name_with_prefix}'"
                )
            except Exception as e:
                log.error(
                    f"Error inserting batch into '{collection_name_with_prefix}': {e}"
                )
                raise

        log.info(
            f"Successfully inserted {len(items)} vectors into '{collection_name_with_prefix}'"
        )

    def upsert(self, collection_name: str, items: List[VectorItem]) -> None:
        """Upsert (insert or update) vectors into a collection."""
        if not items:
            log.warning("No items to upsert")
            return

        collection_name_with_prefix = self._get_collection_name_with_prefix(
            collection_name
        )
        points = self._create_points(items, collection_name_with_prefix)

        # Upsert in batches
        for i in range(0, len(points), BATCH_SIZE):
            batch = points[i : i + BATCH_SIZE]
            try:
                self.index.upsert(vectors=batch)
                log.debug(
                    f"Upserted batch of {len(batch)} vectors into '{collection_name_with_prefix}'"
                )
            except Exception as e:
                log.error(
                    f"Error upserting batch into '{collection_name_with_prefix}': {e}"
                )
                raise

        log.info(
            f"Successfully upserted {len(items)} vectors into '{collection_name_with_prefix}'"
        )

    def search(
        self, collection_name: str, vectors: List[List[Union[float, int]]], limit: int
    ) -> Optional[SearchResult]:
        """Search for similar vectors in a collection."""
        if not vectors or not vectors[0]:
            log.warning("No vectors provided for search")
            return None

        collection_name_with_prefix = self._get_collection_name_with_prefix(
            collection_name
        )

        if limit is None or limit <= 0:
            limit = NO_LIMIT

        try:
            # Search using the first vector (assuming this is the intended behavior)
            query_vector = vectors[0]

            # Perform the search
            query_response = self.index.query(
                vector=query_vector,
                top_k=limit,
                include_metadata=True,
                filter={"collection_name": collection_name_with_prefix},
            )

            if not query_response.matches:
                # Return empty result if no matches
                return SearchResult(
                    ids=[[]],
                    documents=[[]],
                    metadatas=[[]],
                    distances=[[]],
                )

            # Convert to GetResult format
            get_result = self._result_to_get_result(query_response.matches)

            # Calculate normalized distances based on metric
            distances = [
                [
                    self._normalize_distance(match.score)
                    for match in query_response.matches
                ]
            ]

            return SearchResult(
                ids=get_result.ids,
                documents=get_result.documents,
                metadatas=get_result.metadatas,
                distances=distances,
            )
        except Exception as e:
            log.error(f"Error searching in '{collection_name_with_prefix}': {e}")
            return None

    def query(
        self, collection_name: str, filter: Dict, limit: Optional[int] = None
    ) -> Optional[GetResult]:
        """Query vectors by metadata filter."""
        collection_name_with_prefix = self._get_collection_name_with_prefix(
            collection_name
        )

        if limit is None or limit <= 0:
            limit = NO_LIMIT

        try:
            # Create a zero vector for the dimension as Pinecone requires a vector
            zero_vector = [0.0] * self.dimension

            # Combine user filter with collection_name
            pinecone_filter = {"collection_name": collection_name_with_prefix}
            if filter:
                pinecone_filter.update(filter)

            # Perform metadata-only query
            query_response = self.index.query(
                vector=zero_vector,
                filter=pinecone_filter,
                top_k=limit,
                include_metadata=True,
            )

            return self._result_to_get_result(query_response.matches)

        except Exception as e:
            log.error(f"Error querying collection '{collection_name}': {e}")
            return None

    def get(self, collection_name: str) -> Optional[GetResult]:
        """Get all vectors in a collection."""
        collection_name_with_prefix = self._get_collection_name_with_prefix(
            collection_name
        )

        try:
            # Use a zero vector for fetching all entries
            zero_vector = [0.0] * self.dimension

            # Add filter to only get vectors for this collection
            query_response = self.index.query(
                vector=zero_vector,
                top_k=NO_LIMIT,
                include_metadata=True,
                filter={"collection_name": collection_name_with_prefix},
            )

            return self._result_to_get_result(query_response.matches)

        except Exception as e:
            log.error(f"Error getting collection '{collection_name}': {e}")
            return None

    def delete(
        self,
        collection_name: str,
        ids: Optional[List[str]] = None,
        filter: Optional[Dict] = None,
    ) -> None:
        """Delete vectors by IDs or filter."""
        collection_name_with_prefix = self._get_collection_name_with_prefix(
            collection_name
        )

        try:
            if ids:
                # Delete by IDs (in batches for large deletions)
                for i in range(0, len(ids), BATCH_SIZE):
                    batch_ids = ids[i : i + BATCH_SIZE]
                    # Note: When deleting by ID, we can't filter by collection_name
                    # This is a limitation of Pinecone - be careful with ID uniqueness
                    self.index.delete(ids=batch_ids)
                    log.debug(
                        f"Deleted batch of {len(batch_ids)} vectors by ID from '{collection_name_with_prefix}'"
                    )
                log.info(
                    f"Successfully deleted {len(ids)} vectors by ID from '{collection_name_with_prefix}'"
                )

            elif filter:
                # Combine user filter with collection_name
                pinecone_filter = {"collection_name": collection_name_with_prefix}
                if filter:
                    pinecone_filter.update(filter)
                # Delete by metadata filter
                self.index.delete(filter=pinecone_filter)
                log.info(
                    f"Successfully deleted vectors by filter from '{collection_name_with_prefix}'"
                )

            else:
                log.warning("No ids or filter provided for delete operation")

        except Exception as e:
            log.error(f"Error deleting from collection '{collection_name}': {e}")
            raise

    def reset(self) -> None:
        """Reset the database by deleting all collections."""
        try:
            self.index.delete(delete_all=True)
            log.info("All vectors successfully deleted from the index.")
        except Exception as e:
            log.error(f"Failed to reset Pinecone index: {e}")
            raise