File size: 1,110 Bytes
04f5015 7463538 04f5015 7463538 04f5015 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 |
from fastai.vision.all import *
import tifffile
imgdir = Path('/scratch/train_images')
def get_crops(x):
tile_size = 250
if type(x) == PILImage:
img = np.array(x)
else:
tiff_file = imgdir/f'{x["image_id"]}.tiff'
img = tifffile.imread(tiff_file, key=1)
print('input image shape:', img.shape)
crop = np.array(img.shape) // tile_size * tile_size; crop
imgc = img[:crop[0],:crop[1]]
imgc = imgc.reshape(imgc.shape[0] // tile_size, tile_size, imgc.shape[1] // tile_size, tile_size, 3)
xs, ys = (imgc.mean(axis=1).mean(axis=2).mean(axis=-1) < 252).nonzero()
if len(xs) == 0:
xs, ys = (imgc.mean(axis=1).mean(axis=2).mean(axis=-1)).nonzero()
if len(xs) < 2: print("no data in image:", x)
print('len xs:', len(xs))
pidxs = random.choices(list(range(len(xs))), k=36)
return PILImage.create(imgc[xs[pidxs],:,ys[pidxs],:].reshape(6,6,tile_size,tile_size,3).transpose(0,2,1,3,4).reshape(6*tile_size,6*tile_size,3))
# return imgc.mean(axis=1).mean(axis=2).mean(axis=-1)
def get_labels(x):
return np.arange(5) <= x['isup_grade']
|