Update app.py
Browse files
app.py
CHANGED
@@ -26,27 +26,24 @@ ranker = Reranker("answerdotai/answerai-colbert-small-v1", model_type='colbert')
|
|
26 |
|
27 |
def generate_text(context, query):
|
28 |
inputs = f"Context: {context} Question: {query}"
|
29 |
-
response = client.
|
30 |
return response
|
31 |
-
|
32 |
def test_rag_reranking(query, ranker):
|
33 |
docs = vectordb.similarity_search_with_score(query)
|
34 |
context = []
|
|
|
35 |
for doc, score in docs:
|
36 |
if score < 7:
|
37 |
doc_details = doc.to_json()['kwargs']
|
38 |
context.append(doc_details['page_content'])
|
39 |
|
40 |
-
if
|
41 |
-
useful_context = context[0]
|
42 |
-
generation = generate_text(useful_context, query)
|
43 |
-
return generation
|
44 |
-
else:
|
45 |
return "No se encontr贸 informaci贸n suficiente para responder."
|
46 |
|
47 |
-
|
|
|
48 |
|
49 |
-
best_context = ranked[0]["content"]
|
50 |
return generate_text(best_context, query)
|
51 |
|
52 |
def responder_chat(message, history):
|
|
|
26 |
|
27 |
def generate_text(context, query):
|
28 |
inputs = f"Context: {context} Question: {query}"
|
29 |
+
response = client.text_generation(prompt=inputs)
|
30 |
return response
|
31 |
+
|
32 |
def test_rag_reranking(query, ranker):
|
33 |
docs = vectordb.similarity_search_with_score(query)
|
34 |
context = []
|
35 |
+
|
36 |
for doc, score in docs:
|
37 |
if score < 7:
|
38 |
doc_details = doc.to_json()['kwargs']
|
39 |
context.append(doc_details['page_content'])
|
40 |
|
41 |
+
if not context:
|
|
|
|
|
|
|
|
|
42 |
return "No se encontr贸 informaci贸n suficiente para responder."
|
43 |
|
44 |
+
reranked = ranker.rerank(query=query, documents=context, top_k=1)
|
45 |
+
best_context = reranked[0]["content"]
|
46 |
|
|
|
47 |
return generate_text(best_context, query)
|
48 |
|
49 |
def responder_chat(message, history):
|