joortif commited on
Commit
9a0264a
verified
1 Parent(s): 69dd740

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +46 -47
app.py CHANGED
@@ -1,64 +1,63 @@
1
  import gradio as gr
 
 
 
 
 
 
 
2
  from huggingface_hub import InferenceClient
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
27
 
28
- response = ""
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
 
 
 
 
 
41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
  demo.launch()
 
1
  import gradio as gr
2
+ from langchain_community.llms import HuggingFaceHub
3
+ from langchain_core.output_parsers import StrOutputParser
4
+ from langchain import hub
5
+ from langchain_community.document_loaders import PyPDFLoader
6
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
7
+ from langchain_community.vectorstores import Chroma
8
+ from langchain_huggingface import HuggingFaceEmbeddings
9
  from huggingface_hub import InferenceClient
10
+ from rerankers import Reranker
11
+ import os
12
 
13
+ loader = PyPDFLoader("Constitucion_espa帽ola.pdf")
14
+ documents = loader.load()
 
 
15
 
16
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
17
+ docs_split = text_splitter.split_documents(documents)
18
 
19
+ embedding_function = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
 
 
 
 
 
 
 
 
20
 
21
+ vectordb = Chroma.from_documents(docs_split, embedding_function)
 
 
 
 
22
 
23
+ client = InferenceClient("google/flan-t5-base", token=os.getenv("HUGGINGFACEHUB_API_TOKEN"))
24
 
25
+ ranker = Reranker("answerdotai/answerai-colbert-small-v1", model_type='colbert')
26
 
27
+ def generate_text(context, query):
28
+ inputs = f"Context: {context} Question: {query}"
29
+ response = client.chat_completion(inputs=inputs, task="text2text-generation")
30
+ return response
 
 
 
 
31
 
32
+ def test_rag_reranking(query, ranker):
33
+ docs = vectordb.similarity_search_with_score(query)
34
+ context = []
35
+ for doc, score in docs:
36
+ if score < 7:
37
+ doc_details = doc.to_json()['kwargs']
38
+ context.append(doc_details['page_content'])
39
 
40
+ if len(context) > 0:
41
+ useful_context = context[0]
42
+ generation = generate_text(useful_context, query)
43
+ return generation
44
+ else:
45
+ return "No se encontr贸 informaci贸n suficiente para responder."
46
+
47
+ ranked = ranker.rerank(query=query, documents=raw_contexts, top_k=1)
48
+
49
+ best_context = ranked[0]["content"]
50
+ return generate_text(best_context, query)
51
+
52
+ def responder_chat(message, history):
53
+ respuesta = test_rag_reranking(message, ranker)
54
+ return respuesta
55
 
 
 
 
56
  demo = gr.ChatInterface(
57
+ fn=responder_chat,
58
+ title="Chatbot sobre la constituci贸n espa帽ola",
59
+ theme="soft"
 
 
 
 
 
 
 
 
 
 
60
  )
61
 
 
62
  if __name__ == "__main__":
63
  demo.launch()