Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,63 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
from huggingface_hub import InferenceClient
|
|
|
|
|
3 |
|
4 |
-
""
|
5 |
-
|
6 |
-
"""
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
message,
|
12 |
-
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
|
20 |
-
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
|
26 |
-
|
27 |
|
28 |
-
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
demo = gr.ChatInterface(
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
)
|
61 |
|
62 |
-
|
63 |
if __name__ == "__main__":
|
64 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from langchain_community.llms import HuggingFaceHub
|
3 |
+
from langchain_core.output_parsers import StrOutputParser
|
4 |
+
from langchain import hub
|
5 |
+
from langchain_community.document_loaders import PyPDFLoader
|
6 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
+
from langchain_community.vectorstores import Chroma
|
8 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
9 |
from huggingface_hub import InferenceClient
|
10 |
+
from rerankers import Reranker
|
11 |
+
import os
|
12 |
|
13 |
+
loader = PyPDFLoader("Constitucion_espa帽ola.pdf")
|
14 |
+
documents = loader.load()
|
|
|
|
|
15 |
|
16 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
17 |
+
docs_split = text_splitter.split_documents(documents)
|
18 |
|
19 |
+
embedding_function = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
vectordb = Chroma.from_documents(docs_split, embedding_function)
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
client = InferenceClient("google/flan-t5-base", token=os.getenv("HUGGINGFACEHUB_API_TOKEN"))
|
24 |
|
25 |
+
ranker = Reranker("answerdotai/answerai-colbert-small-v1", model_type='colbert')
|
26 |
|
27 |
+
def generate_text(context, query):
|
28 |
+
inputs = f"Context: {context} Question: {query}"
|
29 |
+
response = client.chat_completion(inputs=inputs, task="text2text-generation")
|
30 |
+
return response
|
|
|
|
|
|
|
|
|
31 |
|
32 |
+
def test_rag_reranking(query, ranker):
|
33 |
+
docs = vectordb.similarity_search_with_score(query)
|
34 |
+
context = []
|
35 |
+
for doc, score in docs:
|
36 |
+
if score < 7:
|
37 |
+
doc_details = doc.to_json()['kwargs']
|
38 |
+
context.append(doc_details['page_content'])
|
39 |
|
40 |
+
if len(context) > 0:
|
41 |
+
useful_context = context[0]
|
42 |
+
generation = generate_text(useful_context, query)
|
43 |
+
return generation
|
44 |
+
else:
|
45 |
+
return "No se encontr贸 informaci贸n suficiente para responder."
|
46 |
+
|
47 |
+
ranked = ranker.rerank(query=query, documents=raw_contexts, top_k=1)
|
48 |
+
|
49 |
+
best_context = ranked[0]["content"]
|
50 |
+
return generate_text(best_context, query)
|
51 |
+
|
52 |
+
def responder_chat(message, history):
|
53 |
+
respuesta = test_rag_reranking(message, ranker)
|
54 |
+
return respuesta
|
55 |
|
|
|
|
|
|
|
56 |
demo = gr.ChatInterface(
|
57 |
+
fn=responder_chat,
|
58 |
+
title="Chatbot sobre la constituci贸n espa帽ola",
|
59 |
+
theme="soft"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
)
|
61 |
|
|
|
62 |
if __name__ == "__main__":
|
63 |
demo.launch()
|